diff options
Diffstat (limited to 'recipes/linux/linux-2.6.23/sched-cfs-v2.6.23.12-v24.1.patch')
-rw-r--r-- | recipes/linux/linux-2.6.23/sched-cfs-v2.6.23.12-v24.1.patch | 8567 |
1 files changed, 8567 insertions, 0 deletions
diff --git a/recipes/linux/linux-2.6.23/sched-cfs-v2.6.23.12-v24.1.patch b/recipes/linux/linux-2.6.23/sched-cfs-v2.6.23.12-v24.1.patch new file mode 100644 index 0000000000..77ee5c8f1d --- /dev/null +++ b/recipes/linux/linux-2.6.23/sched-cfs-v2.6.23.12-v24.1.patch @@ -0,0 +1,8567 @@ +--- + Documentation/sched-design-CFS.txt | 67 + + Makefile | 2 + arch/i386/Kconfig | 11 + drivers/kvm/kvm.h | 10 + fs/pipe.c | 9 + fs/proc/array.c | 21 + fs/proc/base.c | 2 + fs/proc/proc_misc.c | 15 + include/linux/cgroup.h | 12 + include/linux/cpuset.h | 5 + include/linux/kernel.h | 7 + include/linux/kernel_stat.h | 3 + include/linux/nodemask.h | 94 + + include/linux/sched.h | 174 ++ + include/linux/taskstats.h | 7 + include/linux/topology.h | 5 + init/Kconfig | 26 + init/main.c | 3 + kernel/delayacct.c | 8 + kernel/exit.c | 6 + kernel/fork.c | 5 + kernel/ksysfs.c | 8 + kernel/sched.c | 2310 +++++++++++++++++++++++-------------- + kernel/sched_debug.c | 289 +++- + kernel/sched_fair.c | 885 ++++++-------- + kernel/sched_idletask.c | 26 + kernel/sched_rt.c | 54 + kernel/sched_stats.h | 40 + kernel/sysctl.c | 40 + kernel/timer.c | 7 + kernel/tsacct.c | 4 + kernel/user.c | 249 +++ + mm/memory_hotplug.c | 7 + mm/page_alloc.c | 50 + mm/vmscan.c | 4 + net/unix/af_unix.c | 4 + 36 files changed, 2883 insertions(+), 1586 deletions(-) + +--- linux-2.6.23.orig/Documentation/sched-design-CFS.txt ++++ linux-2.6.23/Documentation/sched-design-CFS.txt +@@ -115,5 +115,72 @@ Some implementation details: + - reworked/sanitized SMP load-balancing: the runqueue-walking + assumptions are gone from the load-balancing code now, and + iterators of the scheduling modules are used. The balancing code got + quite a bit simpler as a result. + ++ ++Group scheduler extension to CFS ++================================ ++ ++Normally the scheduler operates on individual tasks and strives to provide ++fair CPU time to each task. Sometimes, it may be desirable to group tasks ++and provide fair CPU time to each such task group. For example, it may ++be desirable to first provide fair CPU time to each user on the system ++and then to each task belonging to a user. ++ ++CONFIG_FAIR_GROUP_SCHED strives to achieve exactly that. It lets ++SCHED_NORMAL/BATCH tasks be be grouped and divides CPU time fairly among such ++groups. At present, there are two (mutually exclusive) mechanisms to group ++tasks for CPU bandwidth control purpose: ++ ++ - Based on user id (CONFIG_FAIR_USER_SCHED) ++ In this option, tasks are grouped according to their user id. ++ - Based on "cgroup" pseudo filesystem (CONFIG_FAIR_CGROUP_SCHED) ++ This options lets the administrator create arbitrary groups ++ of tasks, using the "cgroup" pseudo filesystem. See ++ Documentation/cgroups.txt for more information about this ++ filesystem. ++ ++Only one of these options to group tasks can be chosen and not both. ++ ++Group scheduler tunables: ++ ++When CONFIG_FAIR_USER_SCHED is defined, a directory is created in sysfs for ++each new user and a "cpu_share" file is added in that directory. ++ ++ # cd /sys/kernel/uids ++ # cat 512/cpu_share # Display user 512's CPU share ++ 1024 ++ # echo 2048 > 512/cpu_share # Modify user 512's CPU share ++ # cat 512/cpu_share # Display user 512's CPU share ++ 2048 ++ # ++ ++CPU bandwidth between two users are divided in the ratio of their CPU shares. ++For ex: if you would like user "root" to get twice the bandwidth of user ++"guest", then set the cpu_share for both the users such that "root"'s ++cpu_share is twice "guest"'s cpu_share ++ ++ ++When CONFIG_FAIR_CGROUP_SCHED is defined, a "cpu.shares" file is created ++for each group created using the pseudo filesystem. See example steps ++below to create task groups and modify their CPU share using the "cgroups" ++pseudo filesystem ++ ++ # mkdir /dev/cpuctl ++ # mount -t cgroup -ocpu none /dev/cpuctl ++ # cd /dev/cpuctl ++ ++ # mkdir multimedia # create "multimedia" group of tasks ++ # mkdir browser # create "browser" group of tasks ++ ++ # #Configure the multimedia group to receive twice the CPU bandwidth ++ # #that of browser group ++ ++ # echo 2048 > multimedia/cpu.shares ++ # echo 1024 > browser/cpu.shares ++ ++ # firefox & # Launch firefox and move it to "browser" group ++ # echo <firefox_pid> > browser/tasks ++ ++ # #Launch gmplayer (or your favourite movie player) ++ # echo <movie_player_pid> > multimedia/tasks +--- linux-2.6.23.orig/Makefile ++++ linux-2.6.23/Makefile +@@ -1,9 +1,9 @@ + VERSION = 2 + PATCHLEVEL = 6 + SUBLEVEL = 23 +-EXTRAVERSION = .17 ++EXTRAVERSION = .17-cfs-v24.1 + NAME = Arr Matey! A Hairy Bilge Rat! + + # *DOCUMENTATION* + # To see a list of typical targets execute "make help" + # More info can be located in ./README +--- linux-2.6.23.orig/arch/i386/Kconfig ++++ linux-2.6.23/arch/i386/Kconfig +@@ -212,10 +212,21 @@ config X86_ES7000 + Only choose this option if you have such a system, otherwise you + should say N here. + + endchoice + ++config SCHED_NO_NO_OMIT_FRAME_POINTER ++ bool "Single-depth WCHAN output" ++ default y ++ help ++ Calculate simpler /proc/<PID>/wchan values. If this option ++ is disabled then wchan values will recurse back to the ++ caller function. This provides more accurate wchan values, ++ at the expense of slightly more scheduling overhead. ++ ++ If in doubt, say "Y". ++ + config PARAVIRT + bool "Paravirtualization support (EXPERIMENTAL)" + depends on EXPERIMENTAL + depends on !(X86_VISWS || X86_VOYAGER) + help +--- linux-2.6.23.orig/drivers/kvm/kvm.h ++++ linux-2.6.23/drivers/kvm/kvm.h +@@ -623,10 +623,20 @@ void __kvm_mmu_free_some_pages(struct kv + int kvm_mmu_load(struct kvm_vcpu *vcpu); + void kvm_mmu_unload(struct kvm_vcpu *vcpu); + + int kvm_hypercall(struct kvm_vcpu *vcpu, struct kvm_run *run); + ++static inline void kvm_guest_enter(void) ++{ ++ current->flags |= PF_VCPU; ++} ++ ++static inline void kvm_guest_exit(void) ++{ ++ current->flags &= ~PF_VCPU; ++} ++ + static inline int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t gva, + u32 error_code) + { + return vcpu->mmu.page_fault(vcpu, gva, error_code); + } +--- linux-2.6.23.orig/fs/pipe.c ++++ linux-2.6.23/fs/pipe.c +@@ -43,12 +43,11 @@ void pipe_wait(struct pipe_inode_info *p + + /* + * Pipes are system-local resources, so sleeping on them + * is considered a noninteractive wait: + */ +- prepare_to_wait(&pipe->wait, &wait, +- TASK_INTERRUPTIBLE | TASK_NONINTERACTIVE); ++ prepare_to_wait(&pipe->wait, &wait, TASK_INTERRUPTIBLE); + if (pipe->inode) + mutex_unlock(&pipe->inode->i_mutex); + schedule(); + finish_wait(&pipe->wait, &wait); + if (pipe->inode) +@@ -381,11 +380,11 @@ redo: + } + mutex_unlock(&inode->i_mutex); + + /* Signal writers asynchronously that there is more room. */ + if (do_wakeup) { +- wake_up_interruptible(&pipe->wait); ++ wake_up_interruptible_sync(&pipe->wait); + kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT); + } + if (ret > 0) + file_accessed(filp); + return ret; +@@ -554,11 +553,11 @@ redo2: + pipe->waiting_writers--; + } + out: + mutex_unlock(&inode->i_mutex); + if (do_wakeup) { +- wake_up_interruptible(&pipe->wait); ++ wake_up_interruptible_sync(&pipe->wait); + kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); + } + if (ret > 0) + file_update_time(filp); + return ret; +@@ -648,11 +647,11 @@ pipe_release(struct inode *inode, int de + pipe->writers -= decw; + + if (!pipe->readers && !pipe->writers) { + free_pipe_info(inode); + } else { +- wake_up_interruptible(&pipe->wait); ++ wake_up_interruptible_sync(&pipe->wait); + kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); + kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT); + } + mutex_unlock(&inode->i_mutex); + +--- linux-2.6.23.orig/fs/proc/array.c ++++ linux-2.6.23/fs/proc/array.c +@@ -365,15 +365,22 @@ static cputime_t task_stime(struct task_ + * grows monotonically - apps rely on that): + */ + stime = nsec_to_clock_t(p->se.sum_exec_runtime) - + cputime_to_clock_t(task_utime(p)); + +- p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime)); ++ if (stime >= 0) ++ p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime)); ++ + return p->prev_stime; + } + #endif + ++static cputime_t task_gtime(struct task_struct *p) ++{ ++ return p->gtime; ++} ++ + static int do_task_stat(struct task_struct *task, char *buffer, int whole) + { + unsigned long vsize, eip, esp, wchan = ~0UL; + long priority, nice; + int tty_pgrp = -1, tty_nr = 0; +@@ -385,10 +392,11 @@ static int do_task_stat(struct task_stru + struct mm_struct *mm; + unsigned long long start_time; + unsigned long cmin_flt = 0, cmaj_flt = 0; + unsigned long min_flt = 0, maj_flt = 0; + cputime_t cutime, cstime, utime, stime; ++ cputime_t cgtime, gtime; + unsigned long rsslim = 0; + char tcomm[sizeof(task->comm)]; + unsigned long flags; + + state = *get_task_state(task); +@@ -403,10 +411,11 @@ static int do_task_stat(struct task_stru + get_task_comm(tcomm, task); + + sigemptyset(&sigign); + sigemptyset(&sigcatch); + cutime = cstime = utime = stime = cputime_zero; ++ cgtime = gtime = cputime_zero; + + rcu_read_lock(); + if (lock_task_sighand(task, &flags)) { + struct signal_struct *sig = task->signal; + +@@ -420,27 +429,30 @@ static int do_task_stat(struct task_stru + + cmin_flt = sig->cmin_flt; + cmaj_flt = sig->cmaj_flt; + cutime = sig->cutime; + cstime = sig->cstime; ++ cgtime = sig->cgtime; + rsslim = sig->rlim[RLIMIT_RSS].rlim_cur; + + /* add up live thread stats at the group level */ + if (whole) { + struct task_struct *t = task; + do { + min_flt += t->min_flt; + maj_flt += t->maj_flt; + utime = cputime_add(utime, task_utime(t)); + stime = cputime_add(stime, task_stime(t)); ++ gtime = cputime_add(gtime, task_gtime(t)); + t = next_thread(t); + } while (t != task); + + min_flt += sig->min_flt; + maj_flt += sig->maj_flt; + utime = cputime_add(utime, sig->utime); + stime = cputime_add(stime, sig->stime); ++ gtime = cputime_add(gtime, sig->gtime); + } + + sid = signal_session(sig); + pgid = process_group(task); + ppid = rcu_dereference(task->real_parent)->tgid; +@@ -454,10 +466,11 @@ static int do_task_stat(struct task_stru + if (!whole) { + min_flt = task->min_flt; + maj_flt = task->maj_flt; + utime = task_utime(task); + stime = task_stime(task); ++ gtime = task_gtime(task); + } + + /* scale priority and nice values from timeslices to -20..20 */ + /* to make it look like a "normal" Unix priority/nice value */ + priority = task_prio(task); +@@ -471,11 +484,11 @@ static int do_task_stat(struct task_stru + /* convert nsec -> ticks */ + start_time = nsec_to_clock_t(start_time); + + res = sprintf(buffer, "%d (%s) %c %d %d %d %d %d %u %lu \ + %lu %lu %lu %lu %lu %ld %ld %ld %ld %d 0 %llu %lu %ld %lu %lu %lu %lu %lu \ +-%lu %lu %lu %lu %lu %lu %lu %lu %d %d %u %u %llu\n", ++%lu %lu %lu %lu %lu %lu %lu %lu %d %d %u %u %llu %lu %ld\n", + task->pid, + tcomm, + state, + ppid, + pgid, +@@ -516,11 +529,13 @@ static int do_task_stat(struct task_stru + 0UL, + task->exit_signal, + task_cpu(task), + task->rt_priority, + task->policy, +- (unsigned long long)delayacct_blkio_ticks(task)); ++ (unsigned long long)delayacct_blkio_ticks(task), ++ cputime_to_clock_t(gtime), ++ cputime_to_clock_t(cgtime)); + if (mm) + mmput(mm); + return res; + } + +--- linux-2.6.23.orig/fs/proc/base.c ++++ linux-2.6.23/fs/proc/base.c +@@ -302,11 +302,11 @@ static int proc_pid_wchan(struct task_st + static int proc_pid_schedstat(struct task_struct *task, char *buffer) + { + return sprintf(buffer, "%llu %llu %lu\n", + task->sched_info.cpu_time, + task->sched_info.run_delay, +- task->sched_info.pcnt); ++ task->sched_info.pcount); + } + #endif + + /* The badness from the OOM killer */ + unsigned long badness(struct task_struct *p, unsigned long uptime); +--- linux-2.6.23.orig/fs/proc/proc_misc.c ++++ linux-2.6.23/fs/proc/proc_misc.c +@@ -441,20 +441,22 @@ static const struct file_operations proc + static int show_stat(struct seq_file *p, void *v) + { + int i; + unsigned long jif; + cputime64_t user, nice, system, idle, iowait, irq, softirq, steal; ++ cputime64_t guest; + u64 sum = 0; + struct timespec boottime; + unsigned int *per_irq_sum; + + per_irq_sum = kzalloc(sizeof(unsigned int)*NR_IRQS, GFP_KERNEL); + if (!per_irq_sum) + return -ENOMEM; + + user = nice = system = idle = iowait = + irq = softirq = steal = cputime64_zero; ++ guest = cputime64_zero; + getboottime(&boottime); + jif = boottime.tv_sec; + + for_each_possible_cpu(i) { + int j; +@@ -465,26 +467,28 @@ static int show_stat(struct seq_file *p, + idle = cputime64_add(idle, kstat_cpu(i).cpustat.idle); + iowait = cputime64_add(iowait, kstat_cpu(i).cpustat.iowait); + irq = cputime64_add(irq, kstat_cpu(i).cpustat.irq); + softirq = cputime64_add(softirq, kstat_cpu(i).cpustat.softirq); + steal = cputime64_add(steal, kstat_cpu(i).cpustat.steal); ++ guest = cputime64_add(guest, kstat_cpu(i).cpustat.guest); + for (j = 0; j < NR_IRQS; j++) { + unsigned int temp = kstat_cpu(i).irqs[j]; + sum += temp; + per_irq_sum[j] += temp; + } + } + +- seq_printf(p, "cpu %llu %llu %llu %llu %llu %llu %llu %llu\n", ++ seq_printf(p, "cpu %llu %llu %llu %llu %llu %llu %llu %llu %llu\n", + (unsigned long long)cputime64_to_clock_t(user), + (unsigned long long)cputime64_to_clock_t(nice), + (unsigned long long)cputime64_to_clock_t(system), + (unsigned long long)cputime64_to_clock_t(idle), + (unsigned long long)cputime64_to_clock_t(iowait), + (unsigned long long)cputime64_to_clock_t(irq), + (unsigned long long)cputime64_to_clock_t(softirq), +- (unsigned long long)cputime64_to_clock_t(steal)); ++ (unsigned long long)cputime64_to_clock_t(steal), ++ (unsigned long long)cputime64_to_clock_t(guest)); + for_each_online_cpu(i) { + + /* Copy values here to work around gcc-2.95.3, gcc-2.96 */ + user = kstat_cpu(i).cpustat.user; + nice = kstat_cpu(i).cpustat.nice; +@@ -492,20 +496,23 @@ static int show_stat(struct seq_file *p, + idle = kstat_cpu(i).cpustat.idle; + iowait = kstat_cpu(i).cpustat.iowait; + irq = kstat_cpu(i).cpustat.irq; + softirq = kstat_cpu(i).cpustat.softirq; + steal = kstat_cpu(i).cpustat.steal; +- seq_printf(p, "cpu%d %llu %llu %llu %llu %llu %llu %llu %llu\n", ++ guest = kstat_cpu(i).cpustat.guest; ++ seq_printf(p, ++ "cpu%d %llu %llu %llu %llu %llu %llu %llu %llu %llu\n", + i, + (unsigned long long)cputime64_to_clock_t(user), + (unsigned long long)cputime64_to_clock_t(nice), + (unsigned long long)cputime64_to_clock_t(system), + (unsigned long long)cputime64_to_clock_t(idle), + (unsigned long long)cputime64_to_clock_t(iowait), + (unsigned long long)cputime64_to_clock_t(irq), + (unsigned long long)cputime64_to_clock_t(softirq), +- (unsigned long long)cputime64_to_clock_t(steal)); ++ (unsigned long long)cputime64_to_clock_t(steal), ++ (unsigned long long)cputime64_to_clock_t(guest)); + } + seq_printf(p, "intr %llu", (unsigned long long)sum); + + #ifndef CONFIG_SMP + /* Touches too many cache lines on SMP setups */ +--- /dev/null ++++ linux-2.6.23/include/linux/cgroup.h +@@ -0,0 +1,12 @@ ++#ifndef _LINUX_CGROUP_H ++#define _LINUX_CGROUP_H ++ ++/* ++ * Control groups are not backported - we use a few compatibility ++ * defines to be able to use the upstream sched.c as-is: ++ */ ++#define task_pid_nr(task) (task)->pid ++#define task_pid_vnr(task) (task)->pid ++#define find_task_by_vpid(pid) find_task_by_pid(pid) ++ ++#endif +--- linux-2.6.23.orig/include/linux/cpuset.h ++++ linux-2.6.23/include/linux/cpuset.h +@@ -144,8 +144,13 @@ static inline int cpuset_do_slab_mem_spr + return 0; + } + + static inline void cpuset_track_online_nodes(void) {} + ++static inline cpumask_t cpuset_cpus_allowed_locked(struct task_struct *p) ++{ ++ return cpu_possible_map; ++} ++ + #endif /* !CONFIG_CPUSETS */ + + #endif /* _LINUX_CPUSET_H */ +--- linux-2.6.23.orig/include/linux/kernel.h ++++ linux-2.6.23/include/linux/kernel.h +@@ -59,10 +59,17 @@ extern const char linux_proc_banner[]; + #define KERN_WARNING "<4>" /* warning conditions */ + #define KERN_NOTICE "<5>" /* normal but significant condition */ + #define KERN_INFO "<6>" /* informational */ + #define KERN_DEBUG "<7>" /* debug-level messages */ + ++/* ++ * Annotation for a "continued" line of log printout (only done after a ++ * line that had no enclosing \n). Only to be used by core/arch code ++ * during early bootup (a continued line is not SMP-safe otherwise). ++ */ ++#define KERN_CONT "" ++ + extern int console_printk[]; + + #define console_loglevel (console_printk[0]) + #define default_message_loglevel (console_printk[1]) + #define minimum_console_loglevel (console_printk[2]) +--- linux-2.6.23.orig/include/linux/kernel_stat.h ++++ linux-2.6.23/include/linux/kernel_stat.h +@@ -21,10 +21,11 @@ struct cpu_usage_stat { + cputime64_t softirq; + cputime64_t irq; + cputime64_t idle; + cputime64_t iowait; + cputime64_t steal; ++ cputime64_t guest; + }; + + struct kernel_stat { + struct cpu_usage_stat cpustat; + unsigned int irqs[NR_IRQS]; +@@ -50,9 +51,11 @@ static inline int kstat_irqs(int irq) + + return sum; + } + + extern void account_user_time(struct task_struct *, cputime_t); ++extern void account_user_time_scaled(struct task_struct *, cputime_t); + extern void account_system_time(struct task_struct *, int, cputime_t); ++extern void account_system_time_scaled(struct task_struct *, cputime_t); + extern void account_steal_time(struct task_struct *, cputime_t); + + #endif /* _LINUX_KERNEL_STAT_H */ +--- linux-2.6.23.orig/include/linux/nodemask.h ++++ linux-2.6.23/include/linux/nodemask.h +@@ -336,46 +336,108 @@ static inline void __nodes_remap(nodemas + if (!nodes_empty(mask)) \ + for ((node) = 0; (node) < 1; (node)++) + #endif /* MAX_NUMNODES */ + + /* ++ * Bitmasks that are kept for all the nodes. ++ */ ++enum node_states { ++ N_POSSIBLE, /* The node could become online at some point */ ++ N_ONLINE, /* The node is online */ ++ N_NORMAL_MEMORY, /* The node has regular memory */ ++#ifdef CONFIG_HIGHMEM ++ N_HIGH_MEMORY, /* The node has regular or high memory */ ++#else ++ N_HIGH_MEMORY = N_NORMAL_MEMORY, ++#endif ++ N_CPU, /* The node has one or more cpus */ ++ NR_NODE_STATES ++}; ++ ++/* + * The following particular system nodemasks and operations + * on them manage all possible and online nodes. + */ + +-extern nodemask_t node_online_map; +-extern nodemask_t node_possible_map; ++extern nodemask_t node_states[NR_NODE_STATES]; + + #if MAX_NUMNODES > 1 +-#define num_online_nodes() nodes_weight(node_online_map) +-#define num_possible_nodes() nodes_weight(node_possible_map) +-#define node_online(node) node_isset((node), node_online_map) +-#define node_possible(node) node_isset((node), node_possible_map) +-#define first_online_node first_node(node_online_map) +-#define next_online_node(nid) next_node((nid), node_online_map) ++static inline int node_state(int node, enum node_states state) ++{ ++ return node_isset(node, node_states[state]); ++} ++ ++static inline void node_set_state(int node, enum node_states state) ++{ ++ __node_set(node, &node_states[state]); ++} ++ ++static inline void node_clear_state(int node, enum node_states state) ++{ ++ __node_clear(node, &node_states[state]); ++} ++ ++static inline int num_node_state(enum node_states state) ++{ ++ return nodes_weight(node_states[state]); ++} ++ ++#define for_each_node_state(__node, __state) \ ++ for_each_node_mask((__node), node_states[__state]) ++ ++#define first_online_node first_node(node_states[N_ONLINE]) ++#define next_online_node(nid) next_node((nid), node_states[N_ONLINE]) ++ + extern int nr_node_ids; + #else +-#define num_online_nodes() 1 +-#define num_possible_nodes() 1 +-#define node_online(node) ((node) == 0) +-#define node_possible(node) ((node) == 0) ++ ++static inline int node_state(int node, enum node_states state) ++{ ++ return node == 0; ++} ++ ++static inline void node_set_state(int node, enum node_states state) ++{ ++} ++ ++static inline void node_clear_state(int node, enum node_states state) ++{ ++} ++ ++static inline int num_node_state(enum node_states state) ++{ ++ return 1; ++} ++ ++#define for_each_node_state(node, __state) \ ++ for ( (node) = 0; (node) == 0; (node) = 1) ++ + #define first_online_node 0 + #define next_online_node(nid) (MAX_NUMNODES) + #define nr_node_ids 1 ++ + #endif + ++#define node_online_map node_states[N_ONLINE] ++#define node_possible_map node_states[N_POSSIBLE] ++ + #define any_online_node(mask) \ + ({ \ + int node; \ + for_each_node_mask(node, (mask)) \ + if (node_online(node)) \ + break; \ + node; \ + }) + +-#define node_set_online(node) set_bit((node), node_online_map.bits) +-#define node_set_offline(node) clear_bit((node), node_online_map.bits) ++#define num_online_nodes() num_node_state(N_ONLINE) ++#define num_possible_nodes() num_node_state(N_POSSIBLE) ++#define node_online(node) node_state((node), N_ONLINE) ++#define node_possible(node) node_state((node), N_POSSIBLE) ++ ++#define node_set_online(node) node_set_state((node), N_ONLINE) ++#define node_set_offline(node) node_clear_state((node), N_ONLINE) + +-#define for_each_node(node) for_each_node_mask((node), node_possible_map) +-#define for_each_online_node(node) for_each_node_mask((node), node_online_map) ++#define for_each_node(node) for_each_node_state(node, N_POSSIBLE) ++#define for_each_online_node(node) for_each_node_state(node, N_ONLINE) + + #endif /* __LINUX_NODEMASK_H */ +--- linux-2.6.23.orig/include/linux/sched.h ++++ linux-2.6.23/include/linux/sched.h +@@ -1,10 +1,21 @@ + #ifndef _LINUX_SCHED_H + #define _LINUX_SCHED_H + + #include <linux/auxvec.h> /* For AT_VECTOR_SIZE */ + ++/* backporting helper macro: */ ++#define cpu_sibling_map(cpu) cpu_sibling_map[cpu] ++ ++/* ++ * * Control groups are not backported - we use a few compatibility ++ * * defines to be able to use the upstream sched.c as-is: ++ * */ ++#define task_pid_nr(task) (task)->pid ++#define task_pid_vnr(task) (task)->pid ++#define find_task_by_vpid(pid) find_task_by_pid(pid) ++ + /* + * cloning flags: + */ + #define CSIGNAL 0x000000ff /* signal mask to be sent at exit */ + #define CLONE_VM 0x00000100 /* set if VM shared between processes */ +@@ -84,10 +95,11 @@ struct sched_param { + #include <linux/param.h> + #include <linux/resource.h> + #include <linux/timer.h> + #include <linux/hrtimer.h> + #include <linux/task_io_accounting.h> ++#include <linux/kobject.h> + + #include <asm/processor.h> + + struct exec_domain; + struct futex_pi_state; +@@ -133,10 +145,11 @@ extern unsigned long nr_active(void); + extern unsigned long nr_iowait(void); + extern unsigned long weighted_cpuload(const int cpu); + + struct seq_file; + struct cfs_rq; ++struct task_group; + #ifdef CONFIG_SCHED_DEBUG + extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m); + extern void proc_sched_set_task(struct task_struct *p); + extern void + print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq); +@@ -171,12 +184,11 @@ print_cfs_rq(struct seq_file *m, int cpu + #define TASK_TRACED 8 + /* in tsk->exit_state */ + #define EXIT_ZOMBIE 16 + #define EXIT_DEAD 32 + /* in tsk->state again */ +-#define TASK_NONINTERACTIVE 64 +-#define TASK_DEAD 128 ++#define TASK_DEAD 64 + + #define __set_task_state(tsk, state_value) \ + do { (tsk)->state = (state_value); } while (0) + #define set_task_state(tsk, state_value) \ + set_mb((tsk)->state, (state_value)) +@@ -276,10 +288,14 @@ static inline void touch_all_softlockup_ + #endif + + + /* Attach to any functions which should be ignored in wchan output. */ + #define __sched __attribute__((__section__(".sched.text"))) ++ ++/* Linker adds these: start and end of __sched functions */ ++extern char __sched_text_start[], __sched_text_end[]; ++ + /* Is this address in the __sched functions? */ + extern int in_sched_functions(unsigned long addr); + + #define MAX_SCHEDULE_TIMEOUT LONG_MAX + extern signed long FASTCALL(schedule_timeout(signed long timeout)); +@@ -513,10 +529,12 @@ struct signal_struct { + * and for reaped dead child processes forked by this group. + * Live threads maintain their own counters and add to these + * in __exit_signal, except for the group leader. + */ + cputime_t utime, stime, cutime, cstime; ++ cputime_t gtime; ++ cputime_t cgtime; + unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw; + unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt; + unsigned long inblock, oublock, cinblock, coublock; + + /* +@@ -593,12 +611,27 @@ struct user_struct { + #endif + + /* Hash table maintenance information */ + struct hlist_node uidhash_node; + uid_t uid; ++ ++#ifdef CONFIG_FAIR_USER_SCHED ++ struct task_group *tg; ++#ifdef CONFIG_SYSFS ++ struct kset kset; ++ struct subsys_attribute user_attr; ++ struct work_struct work; ++#endif ++#endif + }; + ++#ifdef CONFIG_FAIR_USER_SCHED ++extern int uids_kobject_init(void); ++#else ++static inline int uids_kobject_init(void) { return 0; } ++#endif ++ + extern struct user_struct *find_user(uid_t); + + extern struct user_struct root_user; + #define INIT_USER (&root_user) + +@@ -606,17 +639,21 @@ struct backing_dev_info; + struct reclaim_state; + + #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) + struct sched_info { + /* cumulative counters */ +- unsigned long pcnt; /* # of times run on this cpu */ ++ unsigned long pcount; /* # of times run on this cpu */ + unsigned long long cpu_time, /* time spent on the cpu */ + run_delay; /* time spent waiting on a runqueue */ + + /* timestamps */ + unsigned long long last_arrival,/* when we last ran on a cpu */ + last_queued; /* when we were last queued to run */ ++#ifdef CONFIG_SCHEDSTATS ++ /* BKL stats */ ++ unsigned int bkl_count; ++#endif + }; + #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */ + + #ifdef CONFIG_SCHEDSTATS + extern const struct file_operations proc_schedstat_operations; +@@ -747,43 +784,42 @@ struct sched_domain { + unsigned int balance_interval; /* initialise to 1. units in ms. */ + unsigned int nr_balance_failed; /* initialise to 0 */ + + #ifdef CONFIG_SCHEDSTATS + /* load_balance() stats */ +- unsigned long lb_cnt[CPU_MAX_IDLE_TYPES]; +- unsigned long lb_failed[CPU_MAX_IDLE_TYPES]; +- unsigned long lb_balanced[CPU_MAX_IDLE_TYPES]; +- unsigned long lb_imbalance[CPU_MAX_IDLE_TYPES]; +- unsigned long lb_gained[CPU_MAX_IDLE_TYPES]; +- unsigned long lb_hot_gained[CPU_MAX_IDLE_TYPES]; +- unsigned long lb_nobusyg[CPU_MAX_IDLE_TYPES]; +- unsigned long lb_nobusyq[CPU_MAX_IDLE_TYPES]; ++ unsigned int lb_count[CPU_MAX_IDLE_TYPES]; ++ unsigned int lb_failed[CPU_MAX_IDLE_TYPES]; ++ unsigned int lb_balanced[CPU_MAX_IDLE_TYPES]; ++ unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES]; ++ unsigned int lb_gained[CPU_MAX_IDLE_TYPES]; ++ unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES]; ++ unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES]; ++ unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES]; + + /* Active load balancing */ +- unsigned long alb_cnt; +- unsigned long alb_failed; +- unsigned long alb_pushed; ++ unsigned int alb_count; ++ unsigned int alb_failed; ++ unsigned int alb_pushed; + + /* SD_BALANCE_EXEC stats */ +- unsigned long sbe_cnt; +- unsigned long sbe_balanced; +- unsigned long sbe_pushed; ++ unsigned int sbe_count; ++ unsigned int sbe_balanced; ++ unsigned int sbe_pushed; + + /* SD_BALANCE_FORK stats */ +- unsigned long sbf_cnt; +- unsigned long sbf_balanced; +- unsigned long sbf_pushed; ++ unsigned int sbf_count; ++ unsigned int sbf_balanced; ++ unsigned int sbf_pushed; + + /* try_to_wake_up() stats */ +- unsigned long ttwu_wake_remote; +- unsigned long ttwu_move_affine; +- unsigned long ttwu_move_balance; ++ unsigned int ttwu_wake_remote; ++ unsigned int ttwu_move_affine; ++ unsigned int ttwu_move_balance; + #endif + }; + +-extern int partition_sched_domains(cpumask_t *partition1, +- cpumask_t *partition2); ++extern void partition_sched_domains(int ndoms_new, cpumask_t *doms_new); + + #endif /* CONFIG_SMP */ + + /* + * A runqueue laden with a single nice 0 task scores a weighted_cpuload of +@@ -851,27 +887,32 @@ struct uts_namespace; + + struct rq; + struct sched_domain; + + struct sched_class { +- struct sched_class *next; ++ const struct sched_class *next; + + void (*enqueue_task) (struct rq *rq, struct task_struct *p, int wakeup); + void (*dequeue_task) (struct rq *rq, struct task_struct *p, int sleep); +- void (*yield_task) (struct rq *rq, struct task_struct *p); ++ void (*yield_task) (struct rq *rq); + + void (*check_preempt_curr) (struct rq *rq, struct task_struct *p); + + struct task_struct * (*pick_next_task) (struct rq *rq); + void (*put_prev_task) (struct rq *rq, struct task_struct *p); + ++#ifdef CONFIG_SMP + unsigned long (*load_balance) (struct rq *this_rq, int this_cpu, +- struct rq *busiest, +- unsigned long max_nr_move, unsigned long max_load_move, ++ struct rq *busiest, unsigned long max_load_move, + struct sched_domain *sd, enum cpu_idle_type idle, + int *all_pinned, int *this_best_prio); + ++ int (*move_one_task) (struct rq *this_rq, int this_cpu, ++ struct rq *busiest, struct sched_domain *sd, ++ enum cpu_idle_type idle); ++#endif ++ + void (*set_curr_task) (struct rq *rq); + void (*task_tick) (struct rq *rq, struct task_struct *p); + void (*task_new) (struct rq *rq, struct task_struct *p); + }; + +@@ -885,46 +926,52 @@ struct load_weight { + * Current field usage histogram: + * + * 4 se->block_start + * 4 se->run_node + * 4 se->sleep_start +- * 4 se->sleep_start_fair + * 6 se->load.weight +- * 7 se->delta_fair +- * 15 se->wait_runtime + */ + struct sched_entity { +- long wait_runtime; +- unsigned long delta_fair_run; +- unsigned long delta_fair_sleep; +- unsigned long delta_exec; +- s64 fair_key; + struct load_weight load; /* for load-balancing */ + struct rb_node run_node; + unsigned int on_rq; + + u64 exec_start; + u64 sum_exec_runtime; ++ u64 vruntime; + u64 prev_sum_exec_runtime; +- u64 wait_start_fair; +- u64 sleep_start_fair; + + #ifdef CONFIG_SCHEDSTATS + u64 wait_start; + u64 wait_max; +- s64 sum_wait_runtime; + + u64 sleep_start; + u64 sleep_max; + s64 sum_sleep_runtime; + + u64 block_start; + u64 block_max; + u64 exec_max; ++ u64 slice_max; + +- unsigned long wait_runtime_overruns; +- unsigned long wait_runtime_underruns; ++ u64 nr_migrations; ++ u64 nr_migrations_cold; ++ u64 nr_failed_migrations_affine; ++ u64 nr_failed_migrations_running; ++ u64 nr_failed_migrations_hot; ++ u64 nr_forced_migrations; ++ u64 nr_forced2_migrations; ++ ++ u64 nr_wakeups; ++ u64 nr_wakeups_sync; ++ u64 nr_wakeups_migrate; ++ u64 nr_wakeups_local; ++ u64 nr_wakeups_remote; ++ u64 nr_wakeups_affine; ++ u64 nr_wakeups_affine_attempts; ++ u64 nr_wakeups_passive; ++ u64 nr_wakeups_idle; + #endif + + #ifdef CONFIG_FAIR_GROUP_SCHED + struct sched_entity *parent; + /* rq on which this entity is (to be) queued: */ +@@ -949,11 +996,11 @@ struct task_struct { + #endif + #endif + + int prio, static_prio, normal_prio; + struct list_head run_list; +- struct sched_class *sched_class; ++ const struct sched_class *sched_class; + struct sched_entity se; + + #ifdef CONFIG_PREEMPT_NOTIFIERS + /* list of struct preempt_notifier: */ + struct hlist_head preempt_notifiers; +@@ -1019,11 +1066,12 @@ struct task_struct { + struct completion *vfork_done; /* for vfork() */ + int __user *set_child_tid; /* CLONE_CHILD_SETTID */ + int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */ + + unsigned int rt_priority; +- cputime_t utime, stime; ++ cputime_t utime, stime, utimescaled, stimescaled; ++ cputime_t gtime; + cputime_t prev_utime, prev_stime; + unsigned long nvcsw, nivcsw; /* context switch counts */ + struct timespec start_time; /* monotonic time */ + struct timespec real_start_time; /* boot based time */ + /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */ +@@ -1312,10 +1360,11 @@ static inline void put_task_struct(struc + #define PF_ALIGNWARN 0x00000001 /* Print alignment warning msgs */ + /* Not implemented yet, only for 486*/ + #define PF_STARTING 0x00000002 /* being created */ + #define PF_EXITING 0x00000004 /* getting shut down */ + #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */ ++#define PF_VCPU 0x00000010 /* I'm a virtual CPU */ + #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */ + #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */ + #define PF_DUMPCORE 0x00000200 /* dumped core */ + #define PF_SIGNALED 0x00000400 /* killed by a signal */ + #define PF_MEMALLOC 0x00000800 /* Allocating memory */ +@@ -1399,19 +1448,30 @@ extern void idle_task_exit(void); + static inline void idle_task_exit(void) {} + #endif + + extern void sched_idle_next(void); + ++#ifdef CONFIG_SCHED_DEBUG + extern unsigned int sysctl_sched_latency; + extern unsigned int sysctl_sched_min_granularity; + extern unsigned int sysctl_sched_wakeup_granularity; + extern unsigned int sysctl_sched_batch_wakeup_granularity; +-extern unsigned int sysctl_sched_stat_granularity; +-extern unsigned int sysctl_sched_runtime_limit; +-extern unsigned int sysctl_sched_compat_yield; + extern unsigned int sysctl_sched_child_runs_first; + extern unsigned int sysctl_sched_features; ++extern unsigned int sysctl_sched_migration_cost; ++extern unsigned int sysctl_sched_nr_migrate; ++#ifdef CONFIG_FAIR_GROUP_SCHED ++extern unsigned int sysctl_sched_min_bal_int_shares; ++extern unsigned int sysctl_sched_max_bal_int_shares; ++#endif ++ ++int sched_nr_latency_handler(struct ctl_table *table, int write, ++ struct file *file, void __user *buffer, size_t *length, ++ loff_t *ppos); ++#endif ++ ++extern unsigned int sysctl_sched_compat_yield; + + #ifdef CONFIG_RT_MUTEXES + extern int rt_mutex_getprio(struct task_struct *p); + extern void rt_mutex_setprio(struct task_struct *p, int prio); + extern void rt_mutex_adjust_pi(struct task_struct *p); +@@ -1841,10 +1901,22 @@ extern long sched_getaffinity(pid_t pid, + + extern int sched_mc_power_savings, sched_smt_power_savings; + + extern void normalize_rt_tasks(void); + ++#ifdef CONFIG_FAIR_GROUP_SCHED ++ ++extern struct task_group init_task_group; ++ ++extern struct task_group *sched_create_group(void); ++extern void sched_destroy_group(struct task_group *tg); ++extern void sched_move_task(struct task_struct *tsk); ++extern int sched_group_set_shares(struct task_group *tg, unsigned long shares); ++extern unsigned long sched_group_shares(struct task_group *tg); ++ ++#endif ++ + #ifdef CONFIG_TASK_XACCT + static inline void add_rchar(struct task_struct *tsk, ssize_t amt) + { + tsk->rchar += amt; + } +@@ -1879,8 +1951,16 @@ static inline void inc_syscr(struct task + static inline void inc_syscw(struct task_struct *tsk) + { + } + #endif + ++#ifdef CONFIG_SMP ++void migration_init(void); ++#else ++static inline void migration_init(void) ++{ ++} ++#endif ++ + #endif /* __KERNEL__ */ + + #endif +--- linux-2.6.23.orig/include/linux/taskstats.h ++++ linux-2.6.23/include/linux/taskstats.h +@@ -29,11 +29,11 @@ + * b) add comment indicating new version number at end of struct + * c) add new fields after version comment; maintain 64-bit alignment + */ + + +-#define TASKSTATS_VERSION 5 ++#define TASKSTATS_VERSION 6 + #define TS_COMM_LEN 32 /* should be >= TASK_COMM_LEN + * in linux/sched.h */ + + struct taskstats { + +@@ -150,10 +150,15 @@ struct taskstats { + __u64 write_bytes; /* bytes of write I/O */ + __u64 cancelled_write_bytes; /* bytes of cancelled write I/O */ + + __u64 nvcsw; /* voluntary_ctxt_switches */ + __u64 nivcsw; /* nonvoluntary_ctxt_switches */ ++ ++ /* time accounting for SMT machines */ ++ __u64 ac_utimescaled; /* utime scaled on frequency etc */ ++ __u64 ac_stimescaled; /* stime scaled on frequency etc */ ++ __u64 cpu_scaled_run_real_total; /* scaled cpu_run_real_total */ + }; + + + /* + * Commands sent from userspace +--- linux-2.6.23.orig/include/linux/topology.h ++++ linux-2.6.23/include/linux/topology.h +@@ -157,19 +157,18 @@ + .max_interval = 4, \ + .busy_factor = 64, \ + .imbalance_pct = 125, \ + .cache_nice_tries = 1, \ + .busy_idx = 2, \ +- .idle_idx = 0, \ +- .newidle_idx = 0, \ ++ .idle_idx = 1, \ ++ .newidle_idx = 2, \ + .wake_idx = 1, \ + .forkexec_idx = 1, \ + .flags = SD_LOAD_BALANCE \ + | SD_BALANCE_NEWIDLE \ + | SD_BALANCE_EXEC \ + | SD_WAKE_AFFINE \ +- | SD_WAKE_IDLE \ + | BALANCE_FOR_PKG_POWER,\ + .last_balance = jiffies, \ + .balance_interval = 1, \ + .nr_balance_failed = 0, \ + } +--- linux-2.6.23.orig/init/Kconfig ++++ linux-2.6.23/init/Kconfig +@@ -271,18 +271,44 @@ config LOG_BUF_SHIFT + 12 => 4 KB + + config CPUSETS + bool "Cpuset support" + depends on SMP ++ # ++ # disabled for now - depends on control groups, which ++ # are hard to backport: ++ # ++ depends on 0 + help + This option will let you create and manage CPUSETs which + allow dynamically partitioning a system into sets of CPUs and + Memory Nodes and assigning tasks to run only within those sets. + This is primarily useful on large SMP or NUMA systems. + + Say N if unsure. + ++config FAIR_GROUP_SCHED ++ bool "Fair group CPU scheduler" ++ default y ++ depends on EXPERIMENTAL ++ help ++ This feature lets CPU scheduler recognize task groups and control CPU ++ bandwidth allocation to such task groups. ++ ++choice ++ depends on FAIR_GROUP_SCHED ++ prompt "Basis for grouping tasks" ++ default FAIR_USER_SCHED ++ ++config FAIR_USER_SCHED ++ bool "user id" ++ help ++ This option will choose userid as the basis for grouping ++ tasks, thus providing equal CPU bandwidth to each user. ++ ++endchoice ++ + config SYSFS_DEPRECATED + bool "Create deprecated sysfs files" + default y + help + This option creates deprecated symlinks such as the +--- linux-2.6.23.orig/init/main.c ++++ linux-2.6.23/init/main.c +@@ -750,15 +750,12 @@ static int __init nosoftlockup_setup(cha + __setup("nosoftlockup", nosoftlockup_setup); + + static void __init do_pre_smp_initcalls(void) + { + extern int spawn_ksoftirqd(void); +-#ifdef CONFIG_SMP +- extern int migration_init(void); + + migration_init(); +-#endif + spawn_ksoftirqd(); + if (!nosoftlockup) + spawn_softlockup_task(); + } + +--- linux-2.6.23.orig/kernel/delayacct.c ++++ linux-2.6.23/kernel/delayacct.c +@@ -113,15 +113,21 @@ int __delayacct_add_tsk(struct taskstats + tmp = (s64)d->cpu_run_real_total; + cputime_to_timespec(tsk->utime + tsk->stime, &ts); + tmp += timespec_to_ns(&ts); + d->cpu_run_real_total = (tmp < (s64)d->cpu_run_real_total) ? 0 : tmp; + ++ tmp = (s64)d->cpu_scaled_run_real_total; ++ cputime_to_timespec(tsk->utimescaled + tsk->stimescaled, &ts); ++ tmp += timespec_to_ns(&ts); ++ d->cpu_scaled_run_real_total = ++ (tmp < (s64)d->cpu_scaled_run_real_total) ? 0 : tmp; ++ + /* + * No locking available for sched_info (and too expensive to add one) + * Mitigate by taking snapshot of values + */ +- t1 = tsk->sched_info.pcnt; ++ t1 = tsk->sched_info.pcount; + t2 = tsk->sched_info.run_delay; + t3 = tsk->sched_info.cpu_time; + + d->cpu_count += t1; + +--- linux-2.6.23.orig/kernel/exit.c ++++ linux-2.6.23/kernel/exit.c +@@ -109,10 +109,11 @@ static void __exit_signal(struct task_st + * We won't ever get here for the group leader, since it + * will have been the last reference on the signal_struct. + */ + sig->utime = cputime_add(sig->utime, tsk->utime); + sig->stime = cputime_add(sig->stime, tsk->stime); ++ sig->gtime = cputime_add(sig->gtime, tsk->gtime); + sig->min_flt += tsk->min_flt; + sig->maj_flt += tsk->maj_flt; + sig->nvcsw += tsk->nvcsw; + sig->nivcsw += tsk->nivcsw; + sig->inblock += task_io_get_inblock(tsk); +@@ -1240,10 +1241,15 @@ static int wait_task_zombie(struct task_ + psig->cstime = + cputime_add(psig->cstime, + cputime_add(p->stime, + cputime_add(sig->stime, + sig->cstime))); ++ psig->cgtime = ++ cputime_add(psig->cgtime, ++ cputime_add(p->gtime, ++ cputime_add(sig->gtime, ++ sig->cgtime))); + psig->cmin_flt += + p->min_flt + sig->min_flt + sig->cmin_flt; + psig->cmaj_flt += + p->maj_flt + sig->maj_flt + sig->cmaj_flt; + psig->cnvcsw += +--- linux-2.6.23.orig/kernel/fork.c ++++ linux-2.6.23/kernel/fork.c +@@ -875,10 +875,12 @@ static inline int copy_signal(unsigned l + + sig->leader = 0; /* session leadership doesn't inherit */ + sig->tty_old_pgrp = NULL; + + sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero; ++ sig->gtime = cputime_zero; ++ sig->cgtime = cputime_zero; + sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0; + sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0; + sig->inblock = sig->oublock = sig->cinblock = sig->coublock = 0; + sig->sum_sched_runtime = 0; + INIT_LIST_HEAD(&sig->cpu_timers[0]); +@@ -1045,10 +1047,13 @@ static struct task_struct *copy_process( + + p->utime = cputime_zero; + p->stime = cputime_zero; + p->prev_utime = cputime_zero; + p->prev_stime = cputime_zero; ++ p->gtime = cputime_zero; ++ p->utimescaled = cputime_zero; ++ p->stimescaled = cputime_zero; + + #ifdef CONFIG_TASK_XACCT + p->rchar = 0; /* I/O counter: bytes read */ + p->wchar = 0; /* I/O counter: bytes written */ + p->syscr = 0; /* I/O counter: read syscalls */ +--- linux-2.6.23.orig/kernel/ksysfs.c ++++ linux-2.6.23/kernel/ksysfs.c +@@ -12,10 +12,11 @@ + #include <linux/string.h> + #include <linux/sysfs.h> + #include <linux/module.h> + #include <linux/init.h> + #include <linux/kexec.h> ++#include <linux/sched.h> + + #define KERNEL_ATTR_RO(_name) \ + static struct subsys_attribute _name##_attr = __ATTR_RO(_name) + + #define KERNEL_ATTR_RW(_name) \ +@@ -114,9 +115,16 @@ static int __init ksysfs_init(void) + notes_attr.size = notes_size; + error = sysfs_create_bin_file(&kernel_subsys.kobj, + ¬es_attr); + } + ++ /* ++ * Create "/sys/kernel/uids" directory and corresponding root user's ++ * directory under it. ++ */ ++ if (!error) ++ error = uids_kobject_init(); ++ + return error; + } + + core_initcall(ksysfs_init); +--- linux-2.6.23.orig/kernel/sched.c ++++ linux-2.6.23/kernel/sched.c +@@ -42,10 +42,11 @@ + #include <linux/profile.h> + #include <linux/freezer.h> + #include <linux/vmalloc.h> + #include <linux/blkdev.h> + #include <linux/delay.h> ++#include <linux/pid_namespace.h> + #include <linux/smp.h> + #include <linux/threads.h> + #include <linux/timer.h> + #include <linux/rcupdate.h> + #include <linux/cpu.h> +@@ -59,21 +60,23 @@ + #include <linux/tsacct_kern.h> + #include <linux/kprobes.h> + #include <linux/delayacct.h> + #include <linux/reciprocal_div.h> + #include <linux/unistd.h> ++#include <linux/pagemap.h> + + #include <asm/tlb.h> ++#include <asm/irq_regs.h> + + /* + * Scheduler clock - returns current time in nanosec units. + * This is default implementation. + * Architectures and sub-architectures can override this. + */ + unsigned long long __attribute__((weak)) sched_clock(void) + { +- return (unsigned long long)jiffies * (1000000000 / HZ); ++ return (unsigned long long)jiffies * (NSEC_PER_SEC / HZ); + } + + /* + * Convert user-nice values [ -20 ... 0 ... 19 ] + * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ], +@@ -93,24 +96,22 @@ unsigned long long __attribute__((weak)) + #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO)) + + /* + * Some helpers for converting nanosecond timing to jiffy resolution + */ +-#define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ)) +-#define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ)) ++#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ)) ++#define JIFFIES_TO_NS(TIME) ((TIME) * (NSEC_PER_SEC / HZ)) + + #define NICE_0_LOAD SCHED_LOAD_SCALE + #define NICE_0_SHIFT SCHED_LOAD_SHIFT + + /* + * These are the 'tuning knobs' of the scheduler: + * +- * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger), +- * default timeslice is 100 msecs, maximum timeslice is 800 msecs. ++ * default timeslice is 100 msecs (used only for SCHED_RR tasks). + * Timeslices get refilled after they expire. + */ +-#define MIN_TIMESLICE max(5 * HZ / 1000, 1) + #define DEF_TIMESLICE (100 * HZ / 1000) + + #ifdef CONFIG_SMP + /* + * Divide a load by a sched group cpu_power : (load / sg->__cpu_power) +@@ -130,28 +131,10 @@ static inline void sg_inc_cpu_power(stru + sg->__cpu_power += val; + sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power); + } + #endif + +-#define SCALE_PRIO(x, prio) \ +- max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE) +- +-/* +- * static_prio_timeslice() scales user-nice values [ -20 ... 0 ... 19 ] +- * to time slice values: [800ms ... 100ms ... 5ms] +- */ +-static unsigned int static_prio_timeslice(int static_prio) +-{ +- if (static_prio == NICE_TO_PRIO(19)) +- return 1; +- +- if (static_prio < NICE_TO_PRIO(0)) +- return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio); +- else +- return SCALE_PRIO(DEF_TIMESLICE, static_prio); +-} +- + static inline int rt_policy(int policy) + { + if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR)) + return 1; + return 0; +@@ -168,45 +151,115 @@ static inline int task_has_rt_policy(str + struct rt_prio_array { + DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */ + struct list_head queue[MAX_RT_PRIO]; + }; + +-struct load_stat { +- struct load_weight load; +- u64 load_update_start, load_update_last; +- unsigned long delta_fair, delta_exec, delta_stat; ++#ifdef CONFIG_FAIR_GROUP_SCHED ++ ++#include <linux/cgroup.h> ++ ++struct cfs_rq; ++ ++/* task group related information */ ++struct task_group { ++#ifdef CONFIG_FAIR_CGROUP_SCHED ++ struct cgroup_subsys_state css; ++#endif ++ /* schedulable entities of this group on each cpu */ ++ struct sched_entity **se; ++ /* runqueue "owned" by this group on each cpu */ ++ struct cfs_rq **cfs_rq; ++ unsigned long shares; ++ /* spinlock to serialize modification to shares */ ++ spinlock_t lock; ++ struct rcu_head rcu; ++}; ++ ++/* Default task group's sched entity on each cpu */ ++static DEFINE_PER_CPU(struct sched_entity, init_sched_entity); ++/* Default task group's cfs_rq on each cpu */ ++static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp; ++ ++static struct sched_entity *init_sched_entity_p[NR_CPUS]; ++static struct cfs_rq *init_cfs_rq_p[NR_CPUS]; ++ ++/* Default task group. ++ * Every task in system belong to this group at bootup. ++ */ ++struct task_group init_task_group = { ++ .se = init_sched_entity_p, ++ .cfs_rq = init_cfs_rq_p, + }; + ++#ifdef CONFIG_FAIR_USER_SCHED ++# define INIT_TASK_GRP_LOAD 2*NICE_0_LOAD ++#else ++# define INIT_TASK_GRP_LOAD NICE_0_LOAD ++#endif ++ ++static int init_task_group_load = INIT_TASK_GRP_LOAD; ++ ++/* return group to which a task belongs */ ++static inline struct task_group *task_group(struct task_struct *p) ++{ ++ struct task_group *tg; ++ ++#ifdef CONFIG_FAIR_USER_SCHED ++ tg = p->user->tg; ++#elif defined(CONFIG_FAIR_CGROUP_SCHED) ++ tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id), ++ struct task_group, css); ++#else ++ tg = &init_task_group; ++#endif ++ return tg; ++} ++ ++/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */ ++static inline void set_task_cfs_rq(struct task_struct *p, unsigned int cpu) ++{ ++ p->se.cfs_rq = task_group(p)->cfs_rq[cpu]; ++ p->se.parent = task_group(p)->se[cpu]; ++} ++ ++#else ++ ++static inline void set_task_cfs_rq(struct task_struct *p, unsigned int cpu) { } ++ ++#endif /* CONFIG_FAIR_GROUP_SCHED */ ++ + /* CFS-related fields in a runqueue */ + struct cfs_rq { + struct load_weight load; + unsigned long nr_running; + +- s64 fair_clock; + u64 exec_clock; +- s64 wait_runtime; +- u64 sleeper_bonus; +- unsigned long wait_runtime_overruns, wait_runtime_underruns; ++ u64 min_vruntime; + + struct rb_root tasks_timeline; + struct rb_node *rb_leftmost; + struct rb_node *rb_load_balance_curr; +-#ifdef CONFIG_FAIR_GROUP_SCHED + /* 'curr' points to currently running entity on this cfs_rq. + * It is set to NULL otherwise (i.e when none are currently running). + */ + struct sched_entity *curr; ++ ++ unsigned long nr_spread_over; ++ ++#ifdef CONFIG_FAIR_GROUP_SCHED + struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */ + +- /* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in ++ /* ++ * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in + * a hierarchy). Non-leaf lrqs hold other higher schedulable entities + * (like users, containers etc.) + * + * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This + * list is used during load balance. + */ +- struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */ ++ struct list_head leaf_cfs_rq_list; ++ struct task_group *tg; /* group that "owns" this runqueue */ + #endif + }; + + /* Real-Time classes' related field in a runqueue: */ + struct rt_rq { +@@ -221,11 +274,12 @@ struct rt_rq { + * Locking rule: those places that want to lock multiple runqueues + * (such as the load balancing or the thread migration code), lock + * acquire operations must be ordered by ascending &runqueue. + */ + struct rq { +- spinlock_t lock; /* runqueue lock */ ++ /* runqueue lock: */ ++ spinlock_t lock; + + /* + * nr_running and cpu_load should be in the same cacheline because + * remote CPUs use both these fields when doing load calculation. + */ +@@ -234,19 +288,21 @@ struct rq { + unsigned long cpu_load[CPU_LOAD_IDX_MAX]; + unsigned char idle_at_tick; + #ifdef CONFIG_NO_HZ + unsigned char in_nohz_recently; + #endif +- struct load_stat ls; /* capture load from *all* tasks on this cpu */ ++ /* capture load from *all* tasks on this cpu: */ ++ struct load_weight load; + unsigned long nr_load_updates; + u64 nr_switches; + + struct cfs_rq cfs; + #ifdef CONFIG_FAIR_GROUP_SCHED +- struct list_head leaf_cfs_rq_list; /* list of leaf cfs_rq on this cpu */ ++ /* list of leaf cfs_rq on this cpu: */ ++ struct list_head leaf_cfs_rq_list; + #endif +- struct rt_rq rt; ++ struct rt_rq rt; + + /* + * This is part of a global counter where only the total sum + * over all CPUs matters. A task can increase this counter on + * one CPU and if it got migrated afterwards it may decrease +@@ -272,34 +328,38 @@ struct rq { + struct sched_domain *sd; + + /* For active balancing */ + int active_balance; + int push_cpu; +- int cpu; /* cpu of this runqueue */ ++ /* cpu of this runqueue: */ ++ int cpu; + + struct task_struct *migration_thread; + struct list_head migration_queue; + #endif + + #ifdef CONFIG_SCHEDSTATS + /* latency stats */ + struct sched_info rq_sched_info; + + /* sys_sched_yield() stats */ +- unsigned long yld_exp_empty; +- unsigned long yld_act_empty; +- unsigned long yld_both_empty; +- unsigned long yld_cnt; ++ unsigned int yld_exp_empty; ++ unsigned int yld_act_empty; ++ unsigned int yld_both_empty; ++ unsigned int yld_count; + + /* schedule() stats */ +- unsigned long sched_switch; +- unsigned long sched_cnt; +- unsigned long sched_goidle; ++ unsigned int sched_switch; ++ unsigned int sched_count; ++ unsigned int sched_goidle; + + /* try_to_wake_up() stats */ +- unsigned long ttwu_cnt; +- unsigned long ttwu_local; ++ unsigned int ttwu_count; ++ unsigned int ttwu_local; ++ ++ /* BKL stats */ ++ unsigned int bkl_count; + #endif + struct lock_class_key rq_lock_key; + }; + + static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); +@@ -380,10 +440,45 @@ static void update_rq_clock(struct rq *r + #define this_rq() (&__get_cpu_var(runqueues)) + #define task_rq(p) cpu_rq(task_cpu(p)) + #define cpu_curr(cpu) (cpu_rq(cpu)->curr) + + /* ++ * Tunables that become constants when CONFIG_SCHED_DEBUG is off: ++ */ ++#ifdef CONFIG_SCHED_DEBUG ++# define const_debug __read_mostly ++#else ++# define const_debug static const ++#endif ++ ++/* ++ * Debugging: various feature bits ++ */ ++enum { ++ SCHED_FEAT_NEW_FAIR_SLEEPERS = 1, ++ SCHED_FEAT_WAKEUP_PREEMPT = 2, ++ SCHED_FEAT_START_DEBIT = 4, ++ SCHED_FEAT_TREE_AVG = 8, ++ SCHED_FEAT_APPROX_AVG = 16, ++}; ++ ++const_debug unsigned int sysctl_sched_features = ++ SCHED_FEAT_NEW_FAIR_SLEEPERS * 1 | ++ SCHED_FEAT_WAKEUP_PREEMPT * 1 | ++ SCHED_FEAT_START_DEBIT * 1 | ++ SCHED_FEAT_TREE_AVG * 0 | ++ SCHED_FEAT_APPROX_AVG * 0; ++ ++#define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x) ++ ++/* ++ * Number of tasks to iterate in a single balance run. ++ * Limited because this is done with IRQs disabled. ++ */ ++const_debug unsigned int sysctl_sched_nr_migrate = 32; ++ ++/* + * For kernel-internal use: high-speed (but slightly incorrect) per-cpu + * clock constructed from sched_clock(): + */ + unsigned long long cpu_clock(int cpu) + { +@@ -391,40 +486,39 @@ unsigned long long cpu_clock(int cpu) + unsigned long flags; + struct rq *rq; + + local_irq_save(flags); + rq = cpu_rq(cpu); +- update_rq_clock(rq); ++ /* ++ * Only call sched_clock() if the scheduler has already been ++ * initialized (some code might call cpu_clock() very early): ++ */ ++ if (rq->idle) ++ update_rq_clock(rq); + now = rq->clock; + local_irq_restore(flags); + + return now; + } +- +-#ifdef CONFIG_FAIR_GROUP_SCHED +-/* Change a task's ->cfs_rq if it moves across CPUs */ +-static inline void set_task_cfs_rq(struct task_struct *p) +-{ +- p->se.cfs_rq = &task_rq(p)->cfs; +-} +-#else +-static inline void set_task_cfs_rq(struct task_struct *p) +-{ +-} +-#endif ++EXPORT_SYMBOL_GPL(cpu_clock); + + #ifndef prepare_arch_switch + # define prepare_arch_switch(next) do { } while (0) + #endif + #ifndef finish_arch_switch + # define finish_arch_switch(prev) do { } while (0) + #endif + ++static inline int task_current(struct rq *rq, struct task_struct *p) ++{ ++ return rq->curr == p; ++} ++ + #ifndef __ARCH_WANT_UNLOCKED_CTXSW + static inline int task_running(struct rq *rq, struct task_struct *p) + { +- return rq->curr == p; ++ return task_current(rq, p); + } + + static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next) + { + } +@@ -449,11 +543,11 @@ static inline void finish_lock_switch(st + static inline int task_running(struct rq *rq, struct task_struct *p) + { + #ifdef CONFIG_SMP + return p->oncpu; + #else +- return rq->curr == p; ++ return task_current(rq, p); + #endif + } + + static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next) + { +@@ -494,44 +588,40 @@ static inline void finish_lock_switch(st + * Must be called interrupts disabled. + */ + static inline struct rq *__task_rq_lock(struct task_struct *p) + __acquires(rq->lock) + { +- struct rq *rq; +- +-repeat_lock_task: +- rq = task_rq(p); +- spin_lock(&rq->lock); +- if (unlikely(rq != task_rq(p))) { ++ for (;;) { ++ struct rq *rq = task_rq(p); ++ spin_lock(&rq->lock); ++ if (likely(rq == task_rq(p))) ++ return rq; + spin_unlock(&rq->lock); +- goto repeat_lock_task; + } +- return rq; + } + + /* + * task_rq_lock - lock the runqueue a given task resides on and disable +- * interrupts. Note the ordering: we can safely lookup the task_rq without ++ * interrupts. Note the ordering: we can safely lookup the task_rq without + * explicitly disabling preemption. + */ + static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags) + __acquires(rq->lock) + { + struct rq *rq; + +-repeat_lock_task: +- local_irq_save(*flags); +- rq = task_rq(p); +- spin_lock(&rq->lock); +- if (unlikely(rq != task_rq(p))) { ++ for (;;) { ++ local_irq_save(*flags); ++ rq = task_rq(p); ++ spin_lock(&rq->lock); ++ if (likely(rq == task_rq(p))) ++ return rq; + spin_unlock_irqrestore(&rq->lock, *flags); +- goto repeat_lock_task; + } +- return rq; + } + +-static inline void __task_rq_unlock(struct rq *rq) ++static void __task_rq_unlock(struct rq *rq) + __releases(rq->lock) + { + spin_unlock(&rq->lock); + } + +@@ -542,11 +632,11 @@ static inline void task_rq_unlock(struct + } + + /* + * this_rq_lock - lock this runqueue and disable interrupts. + */ +-static inline struct rq *this_rq_lock(void) ++static struct rq *this_rq_lock(void) + __acquires(rq->lock) + { + struct rq *rq; + + local_irq_disable(); +@@ -576,10 +666,11 @@ EXPORT_SYMBOL_GPL(sched_clock_idle_sleep + void sched_clock_idle_wakeup_event(u64 delta_ns) + { + struct rq *rq = cpu_rq(smp_processor_id()); + u64 now = sched_clock(); + ++ touch_softlockup_watchdog(); + rq->idle_clock += delta_ns; + /* + * Override the previous timestamp and ignore all + * sched_clock() deltas that occured while we idled, + * and use the PM-provided delta_ns to advance the +@@ -642,23 +733,10 @@ static inline void resched_task(struct t + assert_spin_locked(&task_rq(p)->lock); + set_tsk_need_resched(p); + } + #endif + +-static u64 div64_likely32(u64 divident, unsigned long divisor) +-{ +-#if BITS_PER_LONG == 32 +- if (likely(divident <= 0xffffffffULL)) +- return (u32)divident / divisor; +- do_div(divident, divisor); +- +- return divident; +-#else +- return divident / divisor; +-#endif +-} +- + #if BITS_PER_LONG == 32 + # define WMULT_CONST (~0UL) + #else + # define WMULT_CONST (1UL << 32) + #endif +@@ -696,27 +774,25 @@ static inline unsigned long + calc_delta_fair(unsigned long delta_exec, struct load_weight *lw) + { + return calc_delta_mine(delta_exec, NICE_0_LOAD, lw); + } + +-static void update_load_add(struct load_weight *lw, unsigned long inc) ++static inline void update_load_add(struct load_weight *lw, unsigned long inc) + { + lw->weight += inc; +- lw->inv_weight = 0; + } + +-static void update_load_sub(struct load_weight *lw, unsigned long dec) ++static inline void update_load_sub(struct load_weight *lw, unsigned long dec) + { + lw->weight -= dec; +- lw->inv_weight = 0; + } + + /* + * To aid in avoiding the subversion of "niceness" due to uneven distribution + * of tasks with abnormal "nice" values across CPUs the contribution that + * each task makes to its run queue's load is weighted according to its +- * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a ++ * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a + * scaled version of the new time slice allocation that they receive on time + * slice expiry etc. + */ + + #define WEIGHT_IDLEPRIO 2 +@@ -774,76 +850,62 @@ struct rq_iterator { + void *arg; + struct task_struct *(*start)(void *); + struct task_struct *(*next)(void *); + }; + +-static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest, +- unsigned long max_nr_move, unsigned long max_load_move, +- struct sched_domain *sd, enum cpu_idle_type idle, +- int *all_pinned, unsigned long *load_moved, +- int *this_best_prio, struct rq_iterator *iterator); ++#ifdef CONFIG_SMP ++static unsigned long ++balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest, ++ unsigned long max_load_move, struct sched_domain *sd, ++ enum cpu_idle_type idle, int *all_pinned, ++ int *this_best_prio, struct rq_iterator *iterator); ++ ++static int ++iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest, ++ struct sched_domain *sd, enum cpu_idle_type idle, ++ struct rq_iterator *iterator); ++#endif ++ ++#ifdef CONFIG_CGROUP_CPUACCT ++static void cpuacct_charge(struct task_struct *tsk, u64 cputime); ++#else ++static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {} ++#endif + + #include "sched_stats.h" +-#include "sched_rt.c" +-#include "sched_fair.c" + #include "sched_idletask.c" ++#include "sched_fair.c" ++#include "sched_rt.c" + #ifdef CONFIG_SCHED_DEBUG + # include "sched_debug.c" + #endif + + #define sched_class_highest (&rt_sched_class) + +-static void __update_curr_load(struct rq *rq, struct load_stat *ls) +-{ +- if (rq->curr != rq->idle && ls->load.weight) { +- ls->delta_exec += ls->delta_stat; +- ls->delta_fair += calc_delta_fair(ls->delta_stat, &ls->load); +- ls->delta_stat = 0; +- } +-} +- + /* + * Update delta_exec, delta_fair fields for rq. + * + * delta_fair clock advances at a rate inversely proportional to +- * total load (rq->ls.load.weight) on the runqueue, while ++ * total load (rq->load.weight) on the runqueue, while + * delta_exec advances at the same rate as wall-clock (provided + * cpu is not idle). + * + * delta_exec / delta_fair is a measure of the (smoothened) load on this + * runqueue over any given interval. This (smoothened) load is used + * during load balance. + * +- * This function is called /before/ updating rq->ls.load ++ * This function is called /before/ updating rq->load + * and when switching tasks. + */ +-static void update_curr_load(struct rq *rq) +-{ +- struct load_stat *ls = &rq->ls; +- u64 start; +- +- start = ls->load_update_start; +- ls->load_update_start = rq->clock; +- ls->delta_stat += rq->clock - start; +- /* +- * Stagger updates to ls->delta_fair. Very frequent updates +- * can be expensive. +- */ +- if (ls->delta_stat >= sysctl_sched_stat_granularity) +- __update_curr_load(rq, ls); +-} +- + static inline void inc_load(struct rq *rq, const struct task_struct *p) + { +- update_curr_load(rq); +- update_load_add(&rq->ls.load, p->se.load.weight); ++ update_load_add(&rq->load, p->se.load.weight); + } + + static inline void dec_load(struct rq *rq, const struct task_struct *p) + { +- update_curr_load(rq); +- update_load_sub(&rq->ls.load, p->se.load.weight); ++ update_load_sub(&rq->load, p->se.load.weight); + } + + static void inc_nr_running(struct task_struct *p, struct rq *rq) + { + rq->nr_running++; +@@ -856,12 +918,10 @@ static void dec_nr_running(struct task_s + dec_load(rq, p); + } + + static void set_load_weight(struct task_struct *p) + { +- p->se.wait_runtime = 0; +- + if (task_has_rt_policy(p)) { + p->se.load.weight = prio_to_weight[0] * 2; + p->se.load.inv_weight = prio_to_wmult[0] >> 1; + return; + } +@@ -949,24 +1009,10 @@ static void activate_task(struct rq *rq, + enqueue_task(rq, p, wakeup); + inc_nr_running(p, rq); + } + + /* +- * activate_idle_task - move idle task to the _front_ of runqueue. +- */ +-static inline void activate_idle_task(struct task_struct *p, struct rq *rq) +-{ +- update_rq_clock(rq); +- +- if (p->state == TASK_UNINTERRUPTIBLE) +- rq->nr_uninterruptible--; +- +- enqueue_task(rq, p, 0); +- inc_nr_running(p, rq); +-} +- +-/* + * deactivate_task - remove a task from the runqueue. + */ + static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep) + { + if (p->state == TASK_UNINTERRUPTIBLE) +@@ -986,45 +1032,76 @@ inline int task_curr(const struct task_s + } + + /* Used instead of source_load when we know the type == 0 */ + unsigned long weighted_cpuload(const int cpu) + { +- return cpu_rq(cpu)->ls.load.weight; ++ return cpu_rq(cpu)->load.weight; + } + + static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu) + { ++ set_task_cfs_rq(p, cpu); + #ifdef CONFIG_SMP ++ /* ++ * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be ++ * successfuly executed on another CPU. We must ensure that updates of ++ * per-task data have been completed by this moment. ++ */ ++ smp_wmb(); + task_thread_info(p)->cpu = cpu; +- set_task_cfs_rq(p); + #endif + } + + #ifdef CONFIG_SMP + ++/* ++ * Is this task likely cache-hot: ++ */ ++static inline int ++task_hot(struct task_struct *p, u64 now, struct sched_domain *sd) ++{ ++ s64 delta; ++ ++ if (p->sched_class != &fair_sched_class) ++ return 0; ++ ++ if (sysctl_sched_migration_cost == -1) ++ return 1; ++ if (sysctl_sched_migration_cost == 0) ++ return 0; ++ ++ delta = now - p->se.exec_start; ++ ++ return delta < (s64)sysctl_sched_migration_cost; ++} ++ ++ + void set_task_cpu(struct task_struct *p, unsigned int new_cpu) + { + int old_cpu = task_cpu(p); + struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu); +- u64 clock_offset, fair_clock_offset; ++ struct cfs_rq *old_cfsrq = task_cfs_rq(p), ++ *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu); ++ u64 clock_offset; + + clock_offset = old_rq->clock - new_rq->clock; +- fair_clock_offset = old_rq->cfs.fair_clock - new_rq->cfs.fair_clock; +- +- if (p->se.wait_start_fair) +- p->se.wait_start_fair -= fair_clock_offset; +- if (p->se.sleep_start_fair) +- p->se.sleep_start_fair -= fair_clock_offset; + + #ifdef CONFIG_SCHEDSTATS + if (p->se.wait_start) + p->se.wait_start -= clock_offset; + if (p->se.sleep_start) + p->se.sleep_start -= clock_offset; + if (p->se.block_start) + p->se.block_start -= clock_offset; ++ if (old_cpu != new_cpu) { ++ schedstat_inc(p, se.nr_migrations); ++ if (task_hot(p, old_rq->clock, NULL)) ++ schedstat_inc(p, se.nr_forced2_migrations); ++ } + #endif ++ p->se.vruntime -= old_cfsrq->min_vruntime - ++ new_cfsrq->min_vruntime; + + __set_task_cpu(p, new_cpu); + } + + struct migration_req { +@@ -1075,73 +1152,75 @@ void wait_task_inactive(struct task_stru + { + unsigned long flags; + int running, on_rq; + struct rq *rq; + +-repeat: +- /* +- * We do the initial early heuristics without holding +- * any task-queue locks at all. We'll only try to get +- * the runqueue lock when things look like they will +- * work out! +- */ +- rq = task_rq(p); ++ for (;;) { ++ /* ++ * We do the initial early heuristics without holding ++ * any task-queue locks at all. We'll only try to get ++ * the runqueue lock when things look like they will ++ * work out! ++ */ ++ rq = task_rq(p); + +- /* +- * If the task is actively running on another CPU +- * still, just relax and busy-wait without holding +- * any locks. +- * +- * NOTE! Since we don't hold any locks, it's not +- * even sure that "rq" stays as the right runqueue! +- * But we don't care, since "task_running()" will +- * return false if the runqueue has changed and p +- * is actually now running somewhere else! +- */ +- while (task_running(rq, p)) +- cpu_relax(); ++ /* ++ * If the task is actively running on another CPU ++ * still, just relax and busy-wait without holding ++ * any locks. ++ * ++ * NOTE! Since we don't hold any locks, it's not ++ * even sure that "rq" stays as the right runqueue! ++ * But we don't care, since "task_running()" will ++ * return false if the runqueue has changed and p ++ * is actually now running somewhere else! ++ */ ++ while (task_running(rq, p)) ++ cpu_relax(); + +- /* +- * Ok, time to look more closely! We need the rq +- * lock now, to be *sure*. If we're wrong, we'll +- * just go back and repeat. +- */ +- rq = task_rq_lock(p, &flags); +- running = task_running(rq, p); +- on_rq = p->se.on_rq; +- task_rq_unlock(rq, &flags); ++ /* ++ * Ok, time to look more closely! We need the rq ++ * lock now, to be *sure*. If we're wrong, we'll ++ * just go back and repeat. ++ */ ++ rq = task_rq_lock(p, &flags); ++ running = task_running(rq, p); ++ on_rq = p->se.on_rq; ++ task_rq_unlock(rq, &flags); + +- /* +- * Was it really running after all now that we +- * checked with the proper locks actually held? +- * +- * Oops. Go back and try again.. +- */ +- if (unlikely(running)) { +- cpu_relax(); +- goto repeat; +- } ++ /* ++ * Was it really running after all now that we ++ * checked with the proper locks actually held? ++ * ++ * Oops. Go back and try again.. ++ */ ++ if (unlikely(running)) { ++ cpu_relax(); ++ continue; ++ } + +- /* +- * It's not enough that it's not actively running, +- * it must be off the runqueue _entirely_, and not +- * preempted! +- * +- * So if it wa still runnable (but just not actively +- * running right now), it's preempted, and we should +- * yield - it could be a while. +- */ +- if (unlikely(on_rq)) { +- yield(); +- goto repeat; +- } ++ /* ++ * It's not enough that it's not actively running, ++ * it must be off the runqueue _entirely_, and not ++ * preempted! ++ * ++ * So if it wa still runnable (but just not actively ++ * running right now), it's preempted, and we should ++ * yield - it could be a while. ++ */ ++ if (unlikely(on_rq)) { ++ schedule_timeout_uninterruptible(1); ++ continue; ++ } + +- /* +- * Ahh, all good. It wasn't running, and it wasn't +- * runnable, which means that it will never become +- * running in the future either. We're all done! +- */ ++ /* ++ * Ahh, all good. It wasn't running, and it wasn't ++ * runnable, which means that it will never become ++ * running in the future either. We're all done! ++ */ ++ break; ++ } + } + + /*** + * kick_process - kick a running thread to enter/exit the kernel + * @p: the to-be-kicked thread +@@ -1171,11 +1250,11 @@ void kick_process(struct task_struct *p) + * according to the scheduling class and "nice" value. + * + * We want to under-estimate the load of migration sources, to + * balance conservatively. + */ +-static inline unsigned long source_load(int cpu, int type) ++static unsigned long source_load(int cpu, int type) + { + struct rq *rq = cpu_rq(cpu); + unsigned long total = weighted_cpuload(cpu); + + if (type == 0) +@@ -1186,11 +1265,11 @@ static inline unsigned long source_load( + + /* + * Return a high guess at the load of a migration-target cpu weighted + * according to the scheduling class and "nice" value. + */ +-static inline unsigned long target_load(int cpu, int type) ++static unsigned long target_load(int cpu, int type) + { + struct rq *rq = cpu_rq(cpu); + unsigned long total = weighted_cpuload(cpu); + + if (type == 0) +@@ -1228,11 +1307,11 @@ find_idlest_group(struct sched_domain *s + int local_group; + int i; + + /* Skip over this group if it has no CPUs allowed */ + if (!cpus_intersects(group->cpumask, p->cpus_allowed)) +- goto nextgroup; ++ continue; + + local_group = cpu_isset(this_cpu, group->cpumask); + + /* Tally up the load of all CPUs in the group */ + avg_load = 0; +@@ -1256,13 +1335,11 @@ find_idlest_group(struct sched_domain *s + this = group; + } else if (avg_load < min_load) { + min_load = avg_load; + idlest = group; + } +-nextgroup: +- group = group->next; +- } while (group != sd->groups); ++ } while (group = group->next, group != sd->groups); + + if (!idlest || 100*this_load < imbalance*min_load) + return NULL; + return idlest; + } +@@ -1390,12 +1467,17 @@ static int wake_idle(int cpu, struct tas + + for_each_domain(cpu, sd) { + if (sd->flags & SD_WAKE_IDLE) { + cpus_and(tmp, sd->span, p->cpus_allowed); + for_each_cpu_mask(i, tmp) { +- if (idle_cpu(i)) ++ if (idle_cpu(i)) { ++ if (i != task_cpu(p)) { ++ schedstat_inc(p, ++ se.nr_wakeups_idle); ++ } + return i; ++ } + } + } else { + break; + } + } +@@ -1422,11 +1504,11 @@ static inline int wake_idle(int cpu, str + * + * returns failure only if the task is already active. + */ + static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync) + { +- int cpu, this_cpu, success = 0; ++ int cpu, orig_cpu, this_cpu, success = 0; + unsigned long flags; + long old_state; + struct rq *rq; + #ifdef CONFIG_SMP + struct sched_domain *sd, *this_sd = NULL; +@@ -1441,19 +1523,20 @@ static int try_to_wake_up(struct task_st + + if (p->se.on_rq) + goto out_running; + + cpu = task_cpu(p); ++ orig_cpu = cpu; + this_cpu = smp_processor_id(); + + #ifdef CONFIG_SMP + if (unlikely(task_running(rq, p))) + goto out_activate; + + new_cpu = cpu; + +- schedstat_inc(rq, ttwu_cnt); ++ schedstat_inc(rq, ttwu_count); + if (cpu == this_cpu) { + schedstat_inc(rq, ttwu_local); + goto out_set_cpu; + } + +@@ -1484,10 +1567,17 @@ static int try_to_wake_up(struct task_st + + if (this_sd->flags & SD_WAKE_AFFINE) { + unsigned long tl = this_load; + unsigned long tl_per_task; + ++ /* ++ * Attract cache-cold tasks on sync wakeups: ++ */ ++ if (sync && !task_hot(p, rq->clock, this_sd)) ++ goto out_set_cpu; ++ ++ schedstat_inc(p, se.nr_wakeups_affine_attempts); + tl_per_task = cpu_avg_load_per_task(this_cpu); + + /* + * If sync wakeup then subtract the (maximum possible) + * effect of the currently running task from the load +@@ -1503,10 +1593,11 @@ static int try_to_wake_up(struct task_st + * This domain has SD_WAKE_AFFINE and + * p is cache cold in this domain, and + * there is no bad imbalance. + */ + schedstat_inc(this_sd, ttwu_move_affine); ++ schedstat_inc(p, se.nr_wakeups_affine); + goto out_set_cpu; + } + } + + /* +@@ -1514,10 +1605,11 @@ static int try_to_wake_up(struct task_st + * limit is reached. + */ + if (this_sd->flags & SD_WAKE_BALANCE) { + if (imbalance*this_load <= 100*load) { + schedstat_inc(this_sd, ttwu_move_balance); ++ schedstat_inc(p, se.nr_wakeups_passive); + goto out_set_cpu; + } + } + } + +@@ -1539,22 +1631,22 @@ out_set_cpu: + cpu = task_cpu(p); + } + + out_activate: + #endif /* CONFIG_SMP */ ++ schedstat_inc(p, se.nr_wakeups); ++ if (sync) ++ schedstat_inc(p, se.nr_wakeups_sync); ++ if (orig_cpu != cpu) ++ schedstat_inc(p, se.nr_wakeups_migrate); ++ if (cpu == this_cpu) ++ schedstat_inc(p, se.nr_wakeups_local); ++ else ++ schedstat_inc(p, se.nr_wakeups_remote); + update_rq_clock(rq); + activate_task(rq, p, 1); +- /* +- * Sync wakeups (i.e. those types of wakeups where the waker +- * has indicated that it will leave the CPU in short order) +- * don't trigger a preemption, if the woken up task will run on +- * this cpu. (in this case the 'I will reschedule' promise of +- * the waker guarantees that the freshly woken up task is going +- * to be considered on this CPU.) +- */ +- if (!sync || cpu != this_cpu) +- check_preempt_curr(rq, p); ++ check_preempt_curr(rq, p); + success = 1; + + out_running: + p->state = TASK_RUNNING; + out: +@@ -1581,32 +1673,24 @@ int fastcall wake_up_state(struct task_s + * + * __sched_fork() is basic setup used by init_idle() too: + */ + static void __sched_fork(struct task_struct *p) + { +- p->se.wait_start_fair = 0; + p->se.exec_start = 0; + p->se.sum_exec_runtime = 0; + p->se.prev_sum_exec_runtime = 0; +- p->se.delta_exec = 0; +- p->se.delta_fair_run = 0; +- p->se.delta_fair_sleep = 0; +- p->se.wait_runtime = 0; +- p->se.sleep_start_fair = 0; + + #ifdef CONFIG_SCHEDSTATS + p->se.wait_start = 0; +- p->se.sum_wait_runtime = 0; + p->se.sum_sleep_runtime = 0; + p->se.sleep_start = 0; + p->se.block_start = 0; + p->se.sleep_max = 0; + p->se.block_max = 0; + p->se.exec_max = 0; ++ p->se.slice_max = 0; + p->se.wait_max = 0; +- p->se.wait_runtime_overruns = 0; +- p->se.wait_runtime_underruns = 0; + #endif + + INIT_LIST_HEAD(&p->run_list); + p->se.on_rq = 0; + +@@ -1633,16 +1717,18 @@ void sched_fork(struct task_struct *p, i + __sched_fork(p); + + #ifdef CONFIG_SMP + cpu = sched_balance_self(cpu, SD_BALANCE_FORK); + #endif +- __set_task_cpu(p, cpu); ++ set_task_cpu(p, cpu); + + /* + * Make sure we do not leak PI boosting priority to the child: + */ + p->prio = current->normal_prio; ++ if (!rt_prio(p->prio)) ++ p->sched_class = &fair_sched_class; + + #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) + if (likely(sched_info_on())) + memset(&p->sched_info, 0, sizeof(p->sched_info)); + #endif +@@ -1655,44 +1741,28 @@ void sched_fork(struct task_struct *p, i + #endif + put_cpu(); + } + + /* +- * After fork, child runs first. (default) If set to 0 then +- * parent will (try to) run first. +- */ +-unsigned int __read_mostly sysctl_sched_child_runs_first = 1; +- +-/* + * wake_up_new_task - wake up a newly created task for the first time. + * + * This function will do some initial scheduler statistics housekeeping + * that must be done for every newly created context, then puts the task + * on the runqueue and wakes it. + */ + void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags) + { + unsigned long flags; + struct rq *rq; +- int this_cpu; + + rq = task_rq_lock(p, &flags); + BUG_ON(p->state != TASK_RUNNING); +- this_cpu = smp_processor_id(); /* parent's CPU */ + update_rq_clock(rq); + + p->prio = effective_prio(p); + +- if (rt_prio(p->prio)) +- p->sched_class = &rt_sched_class; +- else +- p->sched_class = &fair_sched_class; +- +- if (!p->sched_class->task_new || !sysctl_sched_child_runs_first || +- (clone_flags & CLONE_VM) || task_cpu(p) != this_cpu || +- !current->se.on_rq) { +- ++ if (!p->sched_class->task_new || !current->se.on_rq) { + activate_task(rq, p, 0); + } else { + /* + * Let the scheduling class do new task startup + * management (if any): +@@ -1793,15 +1863,15 @@ prepare_task_switch(struct rq *rq, struc + * with a prepare_task_switch call before the context switch. + * finish_task_switch will reconcile locking set up by prepare_task_switch, + * and do any other architecture-specific cleanup actions. + * + * Note that we may have delayed dropping an mm in context_switch(). If +- * so, we finish that here outside of the runqueue lock. (Doing it ++ * so, we finish that here outside of the runqueue lock. (Doing it + * with the lock held can cause deadlocks; see schedule() for + * details.) + */ +-static inline void finish_task_switch(struct rq *rq, struct task_struct *prev) ++static void finish_task_switch(struct rq *rq, struct task_struct *prev) + __releases(rq->lock) + { + struct mm_struct *mm = rq->prev_mm; + long prev_state; + +@@ -1847,11 +1917,11 @@ asmlinkage void schedule_tail(struct tas + #ifdef __ARCH_WANT_UNLOCKED_CTXSW + /* In this case, finish_task_switch does not reenable preemption */ + preempt_enable(); + #endif + if (current->set_child_tid) +- put_user(current->pid, current->set_child_tid); ++ put_user(task_pid_vnr(current), current->set_child_tid); + } + + /* + * context_switch - switch to the new MM and the new + * thread's register state. +@@ -1979,56 +2049,30 @@ unsigned long nr_active(void) + * Update rq->cpu_load[] statistics. This function is usually called every + * scheduler tick (TICK_NSEC). + */ + static void update_cpu_load(struct rq *this_rq) + { +- u64 fair_delta64, exec_delta64, idle_delta64, sample_interval64, tmp64; +- unsigned long total_load = this_rq->ls.load.weight; +- unsigned long this_load = total_load; +- struct load_stat *ls = &this_rq->ls; ++ unsigned long this_load = this_rq->load.weight; + int i, scale; + + this_rq->nr_load_updates++; +- if (unlikely(!(sysctl_sched_features & SCHED_FEAT_PRECISE_CPU_LOAD))) +- goto do_avg; +- +- /* Update delta_fair/delta_exec fields first */ +- update_curr_load(this_rq); +- +- fair_delta64 = ls->delta_fair + 1; +- ls->delta_fair = 0; +- +- exec_delta64 = ls->delta_exec + 1; +- ls->delta_exec = 0; +- +- sample_interval64 = this_rq->clock - ls->load_update_last; +- ls->load_update_last = this_rq->clock; +- +- if ((s64)sample_interval64 < (s64)TICK_NSEC) +- sample_interval64 = TICK_NSEC; +- +- if (exec_delta64 > sample_interval64) +- exec_delta64 = sample_interval64; +- +- idle_delta64 = sample_interval64 - exec_delta64; +- +- tmp64 = div64_64(SCHED_LOAD_SCALE * exec_delta64, fair_delta64); +- tmp64 = div64_64(tmp64 * exec_delta64, sample_interval64); +- +- this_load = (unsigned long)tmp64; +- +-do_avg: + + /* Update our load: */ + for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) { + unsigned long old_load, new_load; + + /* scale is effectively 1 << i now, and >> i divides by scale */ + + old_load = this_rq->cpu_load[i]; + new_load = this_load; +- ++ /* ++ * Round up the averaging division if load is increasing. This ++ * prevents us from getting stuck on 9 if the load is 10, for ++ * example. ++ */ ++ if (new_load > old_load) ++ new_load += scale-1; + this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i; + } + } + + #ifdef CONFIG_SMP +@@ -2101,11 +2145,11 @@ static void double_lock_balance(struct r + } + + /* + * If dest_cpu is allowed for this process, migrate the task to it. + * This is accomplished by forcing the cpu_allowed mask to only +- * allow dest_cpu, which will force the cpu onto dest_cpu. Then ++ * allow dest_cpu, which will force the cpu onto dest_cpu. Then + * the cpu_allowed mask is restored. + */ + static void sched_migrate_task(struct task_struct *p, int dest_cpu) + { + struct migration_req req; +@@ -2176,44 +2220,69 @@ int can_migrate_task(struct task_struct + * We do not migrate tasks that are: + * 1) running (obviously), or + * 2) cannot be migrated to this CPU due to cpus_allowed, or + * 3) are cache-hot on their current CPU. + */ +- if (!cpu_isset(this_cpu, p->cpus_allowed)) ++ if (!cpu_isset(this_cpu, p->cpus_allowed)) { ++ schedstat_inc(p, se.nr_failed_migrations_affine); + return 0; ++ } + *all_pinned = 0; + +- if (task_running(rq, p)) ++ if (task_running(rq, p)) { ++ schedstat_inc(p, se.nr_failed_migrations_running); + return 0; ++ } ++ ++ /* ++ * Aggressive migration if: ++ * 1) task is cache cold, or ++ * 2) too many balance attempts have failed. ++ */ ++ ++ if (!task_hot(p, rq->clock, sd) || ++ sd->nr_balance_failed > sd->cache_nice_tries) { ++#ifdef CONFIG_SCHEDSTATS ++ if (task_hot(p, rq->clock, sd)) { ++ schedstat_inc(sd, lb_hot_gained[idle]); ++ schedstat_inc(p, se.nr_forced_migrations); ++ } ++#endif ++ return 1; ++ } + ++ if (task_hot(p, rq->clock, sd)) { ++ schedstat_inc(p, se.nr_failed_migrations_hot); ++ return 0; ++ } + return 1; + } + +-static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest, +- unsigned long max_nr_move, unsigned long max_load_move, +- struct sched_domain *sd, enum cpu_idle_type idle, +- int *all_pinned, unsigned long *load_moved, +- int *this_best_prio, struct rq_iterator *iterator) ++static unsigned long ++balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest, ++ unsigned long max_load_move, struct sched_domain *sd, ++ enum cpu_idle_type idle, int *all_pinned, ++ int *this_best_prio, struct rq_iterator *iterator) + { +- int pulled = 0, pinned = 0, skip_for_load; ++ int loops = 0, pulled = 0, pinned = 0, skip_for_load; + struct task_struct *p; + long rem_load_move = max_load_move; + +- if (max_nr_move == 0 || max_load_move == 0) ++ if (max_load_move == 0) + goto out; + + pinned = 1; + + /* + * Start the load-balancing iterator: + */ + p = iterator->start(iterator->arg); + next: +- if (!p) ++ if (!p || loops++ > sysctl_sched_nr_migrate) + goto out; + /* +- * To help distribute high priority tasks accross CPUs we don't ++ * To help distribute high priority tasks across CPUs we don't + * skip a task if it will be the highest priority task (i.e. smallest + * prio value) on its new queue regardless of its load weight + */ + skip_for_load = (p->se.load.weight >> 1) > rem_load_move + + SCHED_LOAD_SCALE_FUZZ; +@@ -2226,31 +2295,30 @@ next: + pull_task(busiest, p, this_rq, this_cpu); + pulled++; + rem_load_move -= p->se.load.weight; + + /* +- * We only want to steal up to the prescribed number of tasks +- * and the prescribed amount of weighted load. ++ * We only want to steal up to the prescribed amount of weighted load. + */ +- if (pulled < max_nr_move && rem_load_move > 0) { ++ if (rem_load_move > 0) { + if (p->prio < *this_best_prio) + *this_best_prio = p->prio; + p = iterator->next(iterator->arg); + goto next; + } + out: + /* +- * Right now, this is the only place pull_task() is called, ++ * Right now, this is one of only two places pull_task() is called, + * so we can safely collect pull_task() stats here rather than + * inside pull_task(). + */ + schedstat_add(sd, lb_gained[idle], pulled); + + if (all_pinned) + *all_pinned = pinned; +- *load_moved = max_load_move - rem_load_move; +- return pulled; ++ ++ return max_load_move - rem_load_move; + } + + /* + * move_tasks tries to move up to max_load_move weighted load from busiest to + * this_rq, as part of a balancing operation within domain "sd". +@@ -2261,42 +2329,65 @@ out: + static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest, + unsigned long max_load_move, + struct sched_domain *sd, enum cpu_idle_type idle, + int *all_pinned) + { +- struct sched_class *class = sched_class_highest; ++ const struct sched_class *class = sched_class_highest; + unsigned long total_load_moved = 0; + int this_best_prio = this_rq->curr->prio; + + do { + total_load_moved += + class->load_balance(this_rq, this_cpu, busiest, +- ULONG_MAX, max_load_move - total_load_moved, ++ max_load_move - total_load_moved, + sd, idle, all_pinned, &this_best_prio); + class = class->next; + } while (class && max_load_move > total_load_moved); + + return total_load_moved > 0; + } + ++static int ++iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest, ++ struct sched_domain *sd, enum cpu_idle_type idle, ++ struct rq_iterator *iterator) ++{ ++ struct task_struct *p = iterator->start(iterator->arg); ++ int pinned = 0; ++ ++ while (p) { ++ if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) { ++ pull_task(busiest, p, this_rq, this_cpu); ++ /* ++ * Right now, this is only the second place pull_task() ++ * is called, so we can safely collect pull_task() ++ * stats here rather than inside pull_task(). ++ */ ++ schedstat_inc(sd, lb_gained[idle]); ++ ++ return 1; ++ } ++ p = iterator->next(iterator->arg); ++ } ++ ++ return 0; ++} ++ + /* + * move_one_task tries to move exactly one task from busiest to this_rq, as + * part of active balancing operations within "domain". + * Returns 1 if successful and 0 otherwise. + * + * Called with both runqueues locked. + */ + static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest, + struct sched_domain *sd, enum cpu_idle_type idle) + { +- struct sched_class *class; +- int this_best_prio = MAX_PRIO; ++ const struct sched_class *class; + + for (class = sched_class_highest; class; class = class->next) +- if (class->load_balance(this_rq, this_cpu, busiest, +- 1, ULONG_MAX, sd, idle, NULL, +- &this_best_prio)) ++ if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle)) + return 1; + + return 0; + } + +@@ -2313,11 +2404,11 @@ find_busiest_group(struct sched_domain * + struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups; + unsigned long max_load, avg_load, total_load, this_load, total_pwr; + unsigned long max_pull; + unsigned long busiest_load_per_task, busiest_nr_running; + unsigned long this_load_per_task, this_nr_running; +- int load_idx; ++ int load_idx, group_imb = 0; + #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) + int power_savings_balance = 1; + unsigned long leader_nr_running = 0, min_load_per_task = 0; + unsigned long min_nr_running = ULONG_MAX; + struct sched_group *group_min = NULL, *group_leader = NULL; +@@ -2332,23 +2423,26 @@ find_busiest_group(struct sched_domain * + load_idx = sd->newidle_idx; + else + load_idx = sd->idle_idx; + + do { +- unsigned long load, group_capacity; ++ unsigned long load, group_capacity, max_cpu_load, min_cpu_load; + int local_group; + int i; ++ int __group_imb = 0; + unsigned int balance_cpu = -1, first_idle_cpu = 0; + unsigned long sum_nr_running, sum_weighted_load; + + local_group = cpu_isset(this_cpu, group->cpumask); + + if (local_group) + balance_cpu = first_cpu(group->cpumask); + + /* Tally up the load of all CPUs in the group */ + sum_weighted_load = sum_nr_running = avg_load = 0; ++ max_cpu_load = 0; ++ min_cpu_load = ~0UL; + + for_each_cpu_mask(i, group->cpumask) { + struct rq *rq; + + if (!cpu_isset(i, *cpus)) +@@ -2365,12 +2459,17 @@ find_busiest_group(struct sched_domain * + first_idle_cpu = 1; + balance_cpu = i; + } + + load = target_load(i, load_idx); +- } else ++ } else { + load = source_load(i, load_idx); ++ if (load > max_cpu_load) ++ max_cpu_load = load; ++ if (min_cpu_load > load) ++ min_cpu_load = load; ++ } + + avg_load += load; + sum_nr_running += rq->nr_running; + sum_weighted_load += weighted_cpuload(i); + } +@@ -2392,23 +2491,27 @@ find_busiest_group(struct sched_domain * + + /* Adjust by relative CPU power of the group */ + avg_load = sg_div_cpu_power(group, + avg_load * SCHED_LOAD_SCALE); + ++ if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE) ++ __group_imb = 1; ++ + group_capacity = group->__cpu_power / SCHED_LOAD_SCALE; + + if (local_group) { + this_load = avg_load; + this = group; + this_nr_running = sum_nr_running; + this_load_per_task = sum_weighted_load; + } else if (avg_load > max_load && +- sum_nr_running > group_capacity) { ++ (sum_nr_running > group_capacity || __group_imb)) { + max_load = avg_load; + busiest = group; + busiest_nr_running = sum_nr_running; + busiest_load_per_task = sum_weighted_load; ++ group_imb = __group_imb; + } + + #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) + /* + * Busy processors will not participate in power savings +@@ -2476,19 +2579,22 @@ group_next: + if (this_load >= avg_load || + 100*max_load <= sd->imbalance_pct*this_load) + goto out_balanced; + + busiest_load_per_task /= busiest_nr_running; ++ if (group_imb) ++ busiest_load_per_task = min(busiest_load_per_task, avg_load); ++ + /* + * We're trying to get all the cpus to the average_load, so we don't + * want to push ourselves above the average load, nor do we wish to + * reduce the max loaded cpu below the average load, as either of these + * actions would just result in more rebalancing later, and ping-pong + * tasks around. Thus we look for the minimum possible imbalance. + * Negative imbalances (*we* are more loaded than anyone else) will + * be counted as no imbalance for these purposes -- we can't fix that +- * by pulling tasks to us. Be careful of negative numbers as they'll ++ * by pulling tasks to us. Be careful of negative numbers as they'll + * appear as very large values with unsigned longs. + */ + if (max_load <= busiest_load_per_task) + goto out_balanced; + +@@ -2650,11 +2756,11 @@ static int load_balance(int this_cpu, st + */ + if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER && + !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) + sd_idle = 1; + +- schedstat_inc(sd, lb_cnt[idle]); ++ schedstat_inc(sd, lb_count[idle]); + + redo: + group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle, + &cpus, balance); + +@@ -2803,11 +2909,11 @@ load_balance_newidle(int this_cpu, struc + */ + if (sd->flags & SD_SHARE_CPUPOWER && + !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) + sd_idle = 1; + +- schedstat_inc(sd, lb_cnt[CPU_NEWLY_IDLE]); ++ schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]); + redo: + group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE, + &sd_idle, &cpus, NULL); + if (!group) { + schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]); +@@ -2919,11 +3025,11 @@ static void active_load_balance(struct r + + target_rq = cpu_rq(target_cpu); + + /* + * This condition is "impossible", if it occurs +- * we need to fix it. Originally reported by ++ * we need to fix it. Originally reported by + * Bjorn Helgaas on a 128-cpu setup. + */ + BUG_ON(busiest_rq == target_rq); + + /* move a task from busiest_rq to target_rq */ +@@ -2937,11 +3043,11 @@ static void active_load_balance(struct r + cpu_isset(busiest_cpu, sd->span)) + break; + } + + if (likely(sd)) { +- schedstat_inc(sd, alb_cnt); ++ schedstat_inc(sd, alb_count); + + if (move_one_task(target_rq, target_cpu, busiest_rq, + sd, CPU_IDLE)) + schedstat_inc(sd, alb_pushed); + else +@@ -2951,11 +3057,11 @@ static void active_load_balance(struct r + } + + #ifdef CONFIG_NO_HZ + static struct { + atomic_t load_balancer; +- cpumask_t cpu_mask; ++ cpumask_t cpu_mask; + } nohz ____cacheline_aligned = { + .load_balancer = ATOMIC_INIT(-1), + .cpu_mask = CPU_MASK_NONE, + }; + +@@ -3030,11 +3136,11 @@ static DEFINE_SPINLOCK(balancing); + * It checks each scheduling domain to see if it is due to be balanced, + * and initiates a balancing operation if so. + * + * Balancing parameters are set up in arch_init_sched_domains. + */ +-static inline void rebalance_domains(int cpu, enum cpu_idle_type idle) ++static void rebalance_domains(int cpu, enum cpu_idle_type idle) + { + int balance = 1; + struct rq *rq = cpu_rq(cpu); + unsigned long interval; + struct sched_domain *sd; +@@ -3214,22 +3320,10 @@ static inline void trigger_load_balance( + */ + static inline void idle_balance(int cpu, struct rq *rq) + { + } + +-/* Avoid "used but not defined" warning on UP */ +-static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest, +- unsigned long max_nr_move, unsigned long max_load_move, +- struct sched_domain *sd, enum cpu_idle_type idle, +- int *all_pinned, unsigned long *load_moved, +- int *this_best_prio, struct rq_iterator *iterator) +-{ +- *load_moved = 0; +- +- return 0; +-} +- + #endif + + DEFINE_PER_CPU(struct kernel_stat, kstat); + + EXPORT_PER_CPU_SYMBOL(kstat); +@@ -3244,11 +3338,11 @@ unsigned long long task_sched_runtime(st + u64 ns, delta_exec; + struct rq *rq; + + rq = task_rq_lock(p, &flags); + ns = p->se.sum_exec_runtime; +- if (rq->curr == p) { ++ if (task_current(rq, p)) { + update_rq_clock(rq); + delta_exec = rq->clock - p->se.exec_start; + if ((s64)delta_exec > 0) + ns += delta_exec; + } +@@ -3258,11 +3352,10 @@ unsigned long long task_sched_runtime(st + } + + /* + * Account user cpu time to a process. + * @p: the process that the cpu time gets accounted to +- * @hardirq_offset: the offset to subtract from hardirq_count() + * @cputime: the cpu time spent in user space since the last update + */ + void account_user_time(struct task_struct *p, cputime_t cputime) + { + struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; +@@ -3277,10 +3370,39 @@ void account_user_time(struct task_struc + else + cpustat->user = cputime64_add(cpustat->user, tmp); + } + + /* ++ * Account guest cpu time to a process. ++ * @p: the process that the cpu time gets accounted to ++ * @cputime: the cpu time spent in virtual machine since the last update ++ */ ++static void account_guest_time(struct task_struct *p, cputime_t cputime) ++{ ++ cputime64_t tmp; ++ struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; ++ ++ tmp = cputime_to_cputime64(cputime); ++ ++ p->utime = cputime_add(p->utime, cputime); ++ p->gtime = cputime_add(p->gtime, cputime); ++ ++ cpustat->user = cputime64_add(cpustat->user, tmp); ++ cpustat->guest = cputime64_add(cpustat->guest, tmp); ++} ++ ++/* ++ * Account scaled user cpu time to a process. ++ * @p: the process that the cpu time gets accounted to ++ * @cputime: the cpu time spent in user space since the last update ++ */ ++void account_user_time_scaled(struct task_struct *p, cputime_t cputime) ++{ ++ p->utimescaled = cputime_add(p->utimescaled, cputime); ++} ++ ++/* + * Account system cpu time to a process. + * @p: the process that the cpu time gets accounted to + * @hardirq_offset: the offset to subtract from hardirq_count() + * @cputime: the cpu time spent in kernel space since the last update + */ +@@ -3289,10 +3411,13 @@ void account_system_time(struct task_str + { + struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; + struct rq *rq = this_rq(); + cputime64_t tmp; + ++ if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) ++ return account_guest_time(p, cputime); ++ + p->stime = cputime_add(p->stime, cputime); + + /* Add system time to cpustat. */ + tmp = cputime_to_cputime64(cputime); + if (hardirq_count() - hardirq_offset) +@@ -3308,10 +3433,21 @@ void account_system_time(struct task_str + /* Account for system time used */ + acct_update_integrals(p); + } + + /* ++ * Account scaled system cpu time to a process. ++ * @p: the process that the cpu time gets accounted to ++ * @hardirq_offset: the offset to subtract from hardirq_count() ++ * @cputime: the cpu time spent in kernel space since the last update ++ */ ++void account_system_time_scaled(struct task_struct *p, cputime_t cputime) ++{ ++ p->stimescaled = cputime_add(p->stimescaled, cputime); ++} ++ ++/* + * Account for involuntary wait time. + * @p: the process from which the cpu time has been stolen + * @steal: the cpu time spent in involuntary wait + */ + void account_steal_time(struct task_struct *p, cputime_t steal) +@@ -3404,43 +3540,56 @@ EXPORT_SYMBOL(sub_preempt_count); + /* + * Print scheduling while atomic bug: + */ + static noinline void __schedule_bug(struct task_struct *prev) + { +- printk(KERN_ERR "BUG: scheduling while atomic: %s/0x%08x/%d\n", +- prev->comm, preempt_count(), prev->pid); ++ struct pt_regs *regs = get_irq_regs(); ++ ++ printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", ++ prev->comm, prev->pid, preempt_count()); ++ + debug_show_held_locks(prev); + if (irqs_disabled()) + print_irqtrace_events(prev); +- dump_stack(); ++ ++ if (regs) ++ show_regs(regs); ++ else ++ dump_stack(); + } + + /* + * Various schedule()-time debugging checks and statistics: + */ + static inline void schedule_debug(struct task_struct *prev) + { + /* +- * Test if we are atomic. Since do_exit() needs to call into ++ * Test if we are atomic. Since do_exit() needs to call into + * schedule() atomically, we ignore that path for now. + * Otherwise, whine if we are scheduling when we should not be. + */ + if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state)) + __schedule_bug(prev); + + profile_hit(SCHED_PROFILING, __builtin_return_address(0)); + +- schedstat_inc(this_rq(), sched_cnt); ++ schedstat_inc(this_rq(), sched_count); ++#ifdef CONFIG_SCHEDSTATS ++ if (unlikely(prev->lock_depth >= 0)) { ++ schedstat_inc(this_rq(), bkl_count); ++ schedstat_inc(prev, sched_info.bkl_count); ++ } ++#endif + } + + /* + * Pick up the highest-prio task: + */ + static inline struct task_struct * + pick_next_task(struct rq *rq, struct task_struct *prev) + { +- struct sched_class *class; ++ const struct sched_class *class; + struct task_struct *p; + + /* + * Optimization: we know that if all tasks are in + * the fair class we can call that function directly: +@@ -3485,13 +3634,17 @@ need_resched: + release_kernel_lock(prev); + need_resched_nonpreemptible: + + schedule_debug(prev); + +- spin_lock_irq(&rq->lock); +- clear_tsk_need_resched(prev); ++ /* ++ * Do the rq-clock update outside the rq lock: ++ */ ++ local_irq_disable(); + __update_rq_clock(rq); ++ spin_lock(&rq->lock); ++ clear_tsk_need_resched(prev); + + if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) { + if (unlikely((prev->state & TASK_INTERRUPTIBLE) && + unlikely(signal_pending(prev)))) { + prev->state = TASK_RUNNING; +@@ -3530,11 +3683,11 @@ need_resched_nonpreemptible: + EXPORT_SYMBOL(schedule); + + #ifdef CONFIG_PREEMPT + /* + * this is the entry point to schedule() from in-kernel preemption +- * off of preempt_enable. Kernel preemptions off return from interrupt ++ * off of preempt_enable. Kernel preemptions off return from interrupt + * occur there and call schedule directly. + */ + asmlinkage void __sched preempt_schedule(void) + { + struct thread_info *ti = current_thread_info(); +@@ -3542,36 +3695,39 @@ asmlinkage void __sched preempt_schedule + struct task_struct *task = current; + int saved_lock_depth; + #endif + /* + * If there is a non-zero preempt_count or interrupts are disabled, +- * we do not want to preempt the current task. Just return.. ++ * we do not want to preempt the current task. Just return.. + */ + if (likely(ti->preempt_count || irqs_disabled())) + return; + +-need_resched: +- add_preempt_count(PREEMPT_ACTIVE); +- /* +- * We keep the big kernel semaphore locked, but we +- * clear ->lock_depth so that schedule() doesnt +- * auto-release the semaphore: +- */ ++ do { ++ add_preempt_count(PREEMPT_ACTIVE); ++ ++ /* ++ * We keep the big kernel semaphore locked, but we ++ * clear ->lock_depth so that schedule() doesnt ++ * auto-release the semaphore: ++ */ + #ifdef CONFIG_PREEMPT_BKL +- saved_lock_depth = task->lock_depth; +- task->lock_depth = -1; ++ saved_lock_depth = task->lock_depth; ++ task->lock_depth = -1; + #endif +- schedule(); ++ schedule(); + #ifdef CONFIG_PREEMPT_BKL +- task->lock_depth = saved_lock_depth; ++ task->lock_depth = saved_lock_depth; + #endif +- sub_preempt_count(PREEMPT_ACTIVE); ++ sub_preempt_count(PREEMPT_ACTIVE); + +- /* we could miss a preemption opportunity between schedule and now */ +- barrier(); +- if (unlikely(test_thread_flag(TIF_NEED_RESCHED))) +- goto need_resched; ++ /* ++ * Check again in case we missed a preemption opportunity ++ * between schedule and now. ++ */ ++ barrier(); ++ } while (unlikely(test_thread_flag(TIF_NEED_RESCHED))); + } + EXPORT_SYMBOL(preempt_schedule); + + /* + * this is the entry point to schedule() from kernel preemption +@@ -3587,33 +3743,36 @@ asmlinkage void __sched preempt_schedule + int saved_lock_depth; + #endif + /* Catch callers which need to be fixed */ + BUG_ON(ti->preempt_count || !irqs_disabled()); + +-need_resched: +- add_preempt_count(PREEMPT_ACTIVE); +- /* +- * We keep the big kernel semaphore locked, but we +- * clear ->lock_depth so that schedule() doesnt +- * auto-release the semaphore: +- */ ++ do { ++ add_preempt_count(PREEMPT_ACTIVE); ++ ++ /* ++ * We keep the big kernel semaphore locked, but we ++ * clear ->lock_depth so that schedule() doesnt ++ * auto-release the semaphore: ++ */ + #ifdef CONFIG_PREEMPT_BKL +- saved_lock_depth = task->lock_depth; +- task->lock_depth = -1; ++ saved_lock_depth = task->lock_depth; ++ task->lock_depth = -1; + #endif +- local_irq_enable(); +- schedule(); +- local_irq_disable(); ++ local_irq_enable(); ++ schedule(); ++ local_irq_disable(); + #ifdef CONFIG_PREEMPT_BKL +- task->lock_depth = saved_lock_depth; ++ task->lock_depth = saved_lock_depth; + #endif +- sub_preempt_count(PREEMPT_ACTIVE); ++ sub_preempt_count(PREEMPT_ACTIVE); + +- /* we could miss a preemption opportunity between schedule and now */ +- barrier(); +- if (unlikely(test_thread_flag(TIF_NEED_RESCHED))) +- goto need_resched; ++ /* ++ * Check again in case we missed a preemption opportunity ++ * between schedule and now. ++ */ ++ barrier(); ++ } while (unlikely(test_thread_flag(TIF_NEED_RESCHED))); + } + + #endif /* CONFIG_PREEMPT */ + + int default_wake_function(wait_queue_t *curr, unsigned mode, int sync, +@@ -3622,25 +3781,24 @@ int default_wake_function(wait_queue_t * + return try_to_wake_up(curr->private, mode, sync); + } + EXPORT_SYMBOL(default_wake_function); + + /* +- * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just +- * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve ++ * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just ++ * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve + * number) then we wake all the non-exclusive tasks and one exclusive task. + * + * There are circumstances in which we can try to wake a task which has already +- * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns ++ * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns + * zero in this (rare) case, and we handle it by continuing to scan the queue. + */ + static void __wake_up_common(wait_queue_head_t *q, unsigned int mode, + int nr_exclusive, int sync, void *key) + { +- struct list_head *tmp, *next; ++ wait_queue_t *curr, *next; + +- list_for_each_safe(tmp, next, &q->task_list) { +- wait_queue_t *curr = list_entry(tmp, wait_queue_t, task_list); ++ list_for_each_entry_safe(curr, next, &q->task_list, task_list) { + unsigned flags = curr->flags; + + if (curr->func(curr, mode, sync, key) && + (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive) + break; +@@ -3702,11 +3860,11 @@ __wake_up_sync(wait_queue_head_t *q, uns + __wake_up_common(q, mode, nr_exclusive, sync, NULL); + spin_unlock_irqrestore(&q->lock, flags); + } + EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */ + +-void fastcall complete(struct completion *x) ++void complete(struct completion *x) + { + unsigned long flags; + + spin_lock_irqsave(&x->wait.lock, flags); + x->done++; +@@ -3714,11 +3872,11 @@ void fastcall complete(struct completion + 1, 0, NULL); + spin_unlock_irqrestore(&x->wait.lock, flags); + } + EXPORT_SYMBOL(complete); + +-void fastcall complete_all(struct completion *x) ++void complete_all(struct completion *x) + { + unsigned long flags; + + spin_lock_irqsave(&x->wait.lock, flags); + x->done += UINT_MAX/2; +@@ -3726,210 +3884,123 @@ void fastcall complete_all(struct comple + 0, 0, NULL); + spin_unlock_irqrestore(&x->wait.lock, flags); + } + EXPORT_SYMBOL(complete_all); + +-void fastcall __sched wait_for_completion(struct completion *x) +-{ +- might_sleep(); +- +- spin_lock_irq(&x->wait.lock); +- if (!x->done) { +- DECLARE_WAITQUEUE(wait, current); +- +- wait.flags |= WQ_FLAG_EXCLUSIVE; +- __add_wait_queue_tail(&x->wait, &wait); +- do { +- __set_current_state(TASK_UNINTERRUPTIBLE); +- spin_unlock_irq(&x->wait.lock); +- schedule(); +- spin_lock_irq(&x->wait.lock); +- } while (!x->done); +- __remove_wait_queue(&x->wait, &wait); +- } +- x->done--; +- spin_unlock_irq(&x->wait.lock); +-} +-EXPORT_SYMBOL(wait_for_completion); +- +-unsigned long fastcall __sched +-wait_for_completion_timeout(struct completion *x, unsigned long timeout) ++static inline long __sched ++do_wait_for_common(struct completion *x, long timeout, int state) + { +- might_sleep(); +- +- spin_lock_irq(&x->wait.lock); + if (!x->done) { + DECLARE_WAITQUEUE(wait, current); + + wait.flags |= WQ_FLAG_EXCLUSIVE; + __add_wait_queue_tail(&x->wait, &wait); + do { +- __set_current_state(TASK_UNINTERRUPTIBLE); ++ if (state == TASK_INTERRUPTIBLE && ++ signal_pending(current)) { ++ __remove_wait_queue(&x->wait, &wait); ++ return -ERESTARTSYS; ++ } ++ __set_current_state(state); + spin_unlock_irq(&x->wait.lock); + timeout = schedule_timeout(timeout); + spin_lock_irq(&x->wait.lock); + if (!timeout) { + __remove_wait_queue(&x->wait, &wait); +- goto out; ++ return timeout; + } + } while (!x->done); + __remove_wait_queue(&x->wait, &wait); + } + x->done--; +-out: +- spin_unlock_irq(&x->wait.lock); + return timeout; + } +-EXPORT_SYMBOL(wait_for_completion_timeout); + +-int fastcall __sched wait_for_completion_interruptible(struct completion *x) ++static long __sched ++wait_for_common(struct completion *x, long timeout, int state) + { +- int ret = 0; +- + might_sleep(); + + spin_lock_irq(&x->wait.lock); +- if (!x->done) { +- DECLARE_WAITQUEUE(wait, current); +- +- wait.flags |= WQ_FLAG_EXCLUSIVE; +- __add_wait_queue_tail(&x->wait, &wait); +- do { +- if (signal_pending(current)) { +- ret = -ERESTARTSYS; +- __remove_wait_queue(&x->wait, &wait); +- goto out; +- } +- __set_current_state(TASK_INTERRUPTIBLE); +- spin_unlock_irq(&x->wait.lock); +- schedule(); +- spin_lock_irq(&x->wait.lock); +- } while (!x->done); +- __remove_wait_queue(&x->wait, &wait); +- } +- x->done--; +-out: ++ timeout = do_wait_for_common(x, timeout, state); + spin_unlock_irq(&x->wait.lock); +- +- return ret; ++ return timeout; + } +-EXPORT_SYMBOL(wait_for_completion_interruptible); + +-unsigned long fastcall __sched +-wait_for_completion_interruptible_timeout(struct completion *x, +- unsigned long timeout) ++void __sched wait_for_completion(struct completion *x) + { +- might_sleep(); +- +- spin_lock_irq(&x->wait.lock); +- if (!x->done) { +- DECLARE_WAITQUEUE(wait, current); ++ wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE); ++} ++EXPORT_SYMBOL(wait_for_completion); + +- wait.flags |= WQ_FLAG_EXCLUSIVE; +- __add_wait_queue_tail(&x->wait, &wait); +- do { +- if (signal_pending(current)) { +- timeout = -ERESTARTSYS; +- __remove_wait_queue(&x->wait, &wait); +- goto out; +- } +- __set_current_state(TASK_INTERRUPTIBLE); +- spin_unlock_irq(&x->wait.lock); +- timeout = schedule_timeout(timeout); +- spin_lock_irq(&x->wait.lock); +- if (!timeout) { +- __remove_wait_queue(&x->wait, &wait); +- goto out; +- } +- } while (!x->done); +- __remove_wait_queue(&x->wait, &wait); +- } +- x->done--; +-out: +- spin_unlock_irq(&x->wait.lock); +- return timeout; ++unsigned long __sched ++wait_for_completion_timeout(struct completion *x, unsigned long timeout) ++{ ++ return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE); + } +-EXPORT_SYMBOL(wait_for_completion_interruptible_timeout); ++EXPORT_SYMBOL(wait_for_completion_timeout); + +-static inline void +-sleep_on_head(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags) ++int __sched wait_for_completion_interruptible(struct completion *x) + { +- spin_lock_irqsave(&q->lock, *flags); +- __add_wait_queue(q, wait); +- spin_unlock(&q->lock); ++ long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE); ++ if (t == -ERESTARTSYS) ++ return t; ++ return 0; + } ++EXPORT_SYMBOL(wait_for_completion_interruptible); + +-static inline void +-sleep_on_tail(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags) ++unsigned long __sched ++wait_for_completion_interruptible_timeout(struct completion *x, ++ unsigned long timeout) + { +- spin_lock_irq(&q->lock); +- __remove_wait_queue(q, wait); +- spin_unlock_irqrestore(&q->lock, *flags); ++ return wait_for_common(x, timeout, TASK_INTERRUPTIBLE); + } ++EXPORT_SYMBOL(wait_for_completion_interruptible_timeout); + +-void __sched interruptible_sleep_on(wait_queue_head_t *q) ++static long __sched ++sleep_on_common(wait_queue_head_t *q, int state, long timeout) + { + unsigned long flags; + wait_queue_t wait; + + init_waitqueue_entry(&wait, current); + +- current->state = TASK_INTERRUPTIBLE; ++ __set_current_state(state); + +- sleep_on_head(q, &wait, &flags); +- schedule(); +- sleep_on_tail(q, &wait, &flags); ++ spin_lock_irqsave(&q->lock, flags); ++ __add_wait_queue(q, &wait); ++ spin_unlock(&q->lock); ++ timeout = schedule_timeout(timeout); ++ spin_lock_irq(&q->lock); ++ __remove_wait_queue(q, &wait); ++ spin_unlock_irqrestore(&q->lock, flags); ++ ++ return timeout; ++} ++ ++void __sched interruptible_sleep_on(wait_queue_head_t *q) ++{ ++ sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); + } + EXPORT_SYMBOL(interruptible_sleep_on); + + long __sched + interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout) + { +- unsigned long flags; +- wait_queue_t wait; +- +- init_waitqueue_entry(&wait, current); +- +- current->state = TASK_INTERRUPTIBLE; +- +- sleep_on_head(q, &wait, &flags); +- timeout = schedule_timeout(timeout); +- sleep_on_tail(q, &wait, &flags); +- +- return timeout; ++ return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout); + } + EXPORT_SYMBOL(interruptible_sleep_on_timeout); + + void __sched sleep_on(wait_queue_head_t *q) + { +- unsigned long flags; +- wait_queue_t wait; +- +- init_waitqueue_entry(&wait, current); +- +- current->state = TASK_UNINTERRUPTIBLE; +- +- sleep_on_head(q, &wait, &flags); +- schedule(); +- sleep_on_tail(q, &wait, &flags); ++ sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); + } + EXPORT_SYMBOL(sleep_on); + + long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout) + { +- unsigned long flags; +- wait_queue_t wait; +- +- init_waitqueue_entry(&wait, current); +- +- current->state = TASK_UNINTERRUPTIBLE; +- +- sleep_on_head(q, &wait, &flags); +- timeout = schedule_timeout(timeout); +- sleep_on_tail(q, &wait, &flags); +- +- return timeout; ++ return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout); + } + EXPORT_SYMBOL(sleep_on_timeout); + + #ifdef CONFIG_RT_MUTEXES + +@@ -3944,38 +4015,44 @@ EXPORT_SYMBOL(sleep_on_timeout); + * Used by the rt_mutex code to implement priority inheritance logic. + */ + void rt_mutex_setprio(struct task_struct *p, int prio) + { + unsigned long flags; +- int oldprio, on_rq; ++ int oldprio, on_rq, running; + struct rq *rq; + + BUG_ON(prio < 0 || prio > MAX_PRIO); + + rq = task_rq_lock(p, &flags); + update_rq_clock(rq); + + oldprio = p->prio; + on_rq = p->se.on_rq; +- if (on_rq) ++ running = task_current(rq, p); ++ if (on_rq) { + dequeue_task(rq, p, 0); ++ if (running) ++ p->sched_class->put_prev_task(rq, p); ++ } + + if (rt_prio(prio)) + p->sched_class = &rt_sched_class; + else + p->sched_class = &fair_sched_class; + + p->prio = prio; + + if (on_rq) { ++ if (running) ++ p->sched_class->set_curr_task(rq); + enqueue_task(rq, p, 0); + /* + * Reschedule if we are currently running on this runqueue and + * our priority decreased, or if we are not currently running on + * this runqueue and our priority is higher than the current's + */ +- if (task_running(rq, p)) { ++ if (running) { + if (p->prio > oldprio) + resched_task(rq->curr); + } else { + check_preempt_curr(rq, p); + } +@@ -4135,13 +4212,13 @@ struct task_struct *idle_task(int cpu) + + /** + * find_process_by_pid - find a process with a matching PID value. + * @pid: the pid in question. + */ +-static inline struct task_struct *find_process_by_pid(pid_t pid) ++static struct task_struct *find_process_by_pid(pid_t pid) + { +- return pid ? find_task_by_pid(pid) : current; ++ return pid ? find_task_by_vpid(pid) : current; + } + + /* Actually do priority change: must hold rq lock. */ + static void + __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio) +@@ -4177,11 +4254,11 @@ __setscheduler(struct rq *rq, struct tas + * NOTE that the task may be already dead. + */ + int sched_setscheduler(struct task_struct *p, int policy, + struct sched_param *param) + { +- int retval, oldprio, oldpolicy = -1, on_rq; ++ int retval, oldprio, oldpolicy = -1, on_rq, running; + unsigned long flags; + struct rq *rq; + + /* may grab non-irq protected spin_locks */ + BUG_ON(in_interrupt()); +@@ -4259,22 +4336,30 @@ recheck: + spin_unlock_irqrestore(&p->pi_lock, flags); + goto recheck; + } + update_rq_clock(rq); + on_rq = p->se.on_rq; +- if (on_rq) ++ running = task_current(rq, p); ++ if (on_rq) { + deactivate_task(rq, p, 0); ++ if (running) ++ p->sched_class->put_prev_task(rq, p); ++ } ++ + oldprio = p->prio; + __setscheduler(rq, p, policy, param->sched_priority); ++ + if (on_rq) { ++ if (running) ++ p->sched_class->set_curr_task(rq); + activate_task(rq, p, 0); + /* + * Reschedule if we are currently running on this runqueue and + * our priority decreased, or if we are not currently running on + * this runqueue and our priority is higher than the current's + */ +- if (task_running(rq, p)) { ++ if (running) { + if (p->prio > oldprio) + resched_task(rq->curr); + } else { + check_preempt_curr(rq, p); + } +@@ -4314,12 +4399,12 @@ do_sched_setscheduler(pid_t pid, int pol + * sys_sched_setscheduler - set/change the scheduler policy and RT priority + * @pid: the pid in question. + * @policy: new policy. + * @param: structure containing the new RT priority. + */ +-asmlinkage long sys_sched_setscheduler(pid_t pid, int policy, +- struct sched_param __user *param) ++asmlinkage long ++sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) + { + /* negative values for policy are not valid */ + if (policy < 0) + return -EINVAL; + +@@ -4341,26 +4426,24 @@ asmlinkage long sys_sched_setparam(pid_t + * @pid: the pid in question. + */ + asmlinkage long sys_sched_getscheduler(pid_t pid) + { + struct task_struct *p; +- int retval = -EINVAL; ++ int retval; + + if (pid < 0) +- goto out_nounlock; ++ return -EINVAL; + + retval = -ESRCH; + read_lock(&tasklist_lock); + p = find_process_by_pid(pid); + if (p) { + retval = security_task_getscheduler(p); + if (!retval) + retval = p->policy; + } + read_unlock(&tasklist_lock); +- +-out_nounlock: + return retval; + } + + /** + * sys_sched_getscheduler - get the RT priority of a thread +@@ -4369,14 +4452,14 @@ out_nounlock: + */ + asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param) + { + struct sched_param lp; + struct task_struct *p; +- int retval = -EINVAL; ++ int retval; + + if (!param || pid < 0) +- goto out_nounlock; ++ return -EINVAL; + + read_lock(&tasklist_lock); + p = find_process_by_pid(pid); + retval = -ESRCH; + if (!p) +@@ -4392,11 +4475,10 @@ asmlinkage long sys_sched_getparam(pid_t + /* + * This one might sleep, we cannot do it with a spinlock held ... + */ + retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; + +-out_nounlock: + return retval; + + out_unlock: + read_unlock(&tasklist_lock); + return retval; +@@ -4418,11 +4500,11 @@ long sched_setaffinity(pid_t pid, cpumas + return -ESRCH; + } + + /* + * It is not safe to call set_cpus_allowed with the +- * tasklist_lock held. We will bump the task_struct's ++ * tasklist_lock held. We will bump the task_struct's + * usage count and then drop tasklist_lock. + */ + get_task_struct(p); + read_unlock(&tasklist_lock); + +@@ -4435,12 +4517,25 @@ long sched_setaffinity(pid_t pid, cpumas + if (retval) + goto out_unlock; + + cpus_allowed = cpuset_cpus_allowed(p); + cpus_and(new_mask, new_mask, cpus_allowed); ++ again: + retval = set_cpus_allowed(p, new_mask); + ++ if (!retval) { ++ cpus_allowed = cpuset_cpus_allowed(p); ++ if (!cpus_subset(new_mask, cpus_allowed)) { ++ /* ++ * We must have raced with a concurrent cpuset ++ * update. Just reset the cpus_allowed to the ++ * cpuset's cpus_allowed ++ */ ++ new_mask = cpus_allowed; ++ goto again; ++ } ++ } + out_unlock: + put_task_struct(p); + mutex_unlock(&sched_hotcpu_mutex); + return retval; + } +@@ -4552,12 +4647,12 @@ asmlinkage long sys_sched_getaffinity(pi + */ + asmlinkage long sys_sched_yield(void) + { + struct rq *rq = this_rq_lock(); + +- schedstat_inc(rq, yld_cnt); +- current->sched_class->yield_task(rq, current); ++ schedstat_inc(rq, yld_count); ++ current->sched_class->yield_task(rq); + + /* + * Since we are going to call schedule() anyway, there's + * no need to preempt or enable interrupts: + */ +@@ -4601,11 +4696,11 @@ EXPORT_SYMBOL(cond_resched); + + /* + * cond_resched_lock() - if a reschedule is pending, drop the given lock, + * call schedule, and on return reacquire the lock. + * +- * This works OK both with and without CONFIG_PREEMPT. We do strange low-level ++ * This works OK both with and without CONFIG_PREEMPT. We do strange low-level + * operations here to prevent schedule() from being called twice (once via + * spin_unlock(), once by hand). + */ + int cond_resched_lock(spinlock_t *lock) + { +@@ -4655,11 +4750,11 @@ void __sched yield(void) + sys_sched_yield(); + } + EXPORT_SYMBOL(yield); + + /* +- * This task is about to go to sleep on IO. Increment rq->nr_iowait so ++ * This task is about to go to sleep on IO. Increment rq->nr_iowait so + * that process accounting knows that this is a task in IO wait state. + * + * But don't do that if it is a deliberate, throttling IO wait (this task + * has set its backing_dev_info: the queue against which it should throttle) + */ +@@ -4747,15 +4842,16 @@ asmlinkage long sys_sched_get_priority_m + */ + asmlinkage + long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval) + { + struct task_struct *p; +- int retval = -EINVAL; ++ unsigned int time_slice; ++ int retval; + struct timespec t; + + if (pid < 0) +- goto out_nounlock; ++ return -EINVAL; + + retval = -ESRCH; + read_lock(&tasklist_lock); + p = find_process_by_pid(pid); + if (!p) +@@ -4763,16 +4859,32 @@ long sys_sched_rr_get_interval(pid_t pid + + retval = security_task_getscheduler(p); + if (retval) + goto out_unlock; + +- jiffies_to_timespec(p->policy == SCHED_FIFO ? +- 0 : static_prio_timeslice(p->static_prio), &t); ++ /* ++ * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER ++ * tasks that are on an otherwise idle runqueue: ++ */ ++ time_slice = 0; ++ if (p->policy == SCHED_RR) { ++ time_slice = DEF_TIMESLICE; ++ } else { ++ struct sched_entity *se = &p->se; ++ unsigned long flags; ++ struct rq *rq; ++ ++ rq = task_rq_lock(p, &flags); ++ if (rq->cfs.load.weight) ++ time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se)); ++ task_rq_unlock(rq, &flags); ++ } + read_unlock(&tasklist_lock); ++ jiffies_to_timespec(time_slice, &t); + retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0; +-out_nounlock: + return retval; ++ + out_unlock: + read_unlock(&tasklist_lock); + return retval; + } + +@@ -4782,32 +4894,33 @@ static void show_task(struct task_struct + { + unsigned long free = 0; + unsigned state; + + state = p->state ? __ffs(p->state) + 1 : 0; +- printk("%-13.13s %c", p->comm, ++ printk(KERN_INFO "%-13.13s %c", p->comm, + state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?'); + #if BITS_PER_LONG == 32 + if (state == TASK_RUNNING) +- printk(" running "); ++ printk(KERN_CONT " running "); + else +- printk(" %08lx ", thread_saved_pc(p)); ++ printk(KERN_CONT " %08lx ", thread_saved_pc(p)); + #else + if (state == TASK_RUNNING) +- printk(" running task "); ++ printk(KERN_CONT " running task "); + else +- printk(" %016lx ", thread_saved_pc(p)); ++ printk(KERN_CONT " %016lx ", thread_saved_pc(p)); + #endif + #ifdef CONFIG_DEBUG_STACK_USAGE + { + unsigned long *n = end_of_stack(p); + while (!*n) + n++; + free = (unsigned long)n - (unsigned long)end_of_stack(p); + } + #endif +- printk("%5lu %5d %6d\n", free, p->pid, p->parent->pid); ++ printk(KERN_CONT "%5lu %5d %6d\n", free, ++ task_pid_nr(p), task_pid_nr(p->parent)); + + if (state != TASK_RUNNING) + show_stack(p, NULL); + } + +@@ -4909,22 +5022,22 @@ cpumask_t nohz_cpu_mask = CPU_MASK_NONE; + * This idea comes from the SD scheduler of Con Kolivas: + */ + static inline void sched_init_granularity(void) + { + unsigned int factor = 1 + ilog2(num_online_cpus()); +- const unsigned long limit = 100000000; ++ const unsigned long limit = 200000000; + + sysctl_sched_min_granularity *= factor; + if (sysctl_sched_min_granularity > limit) + sysctl_sched_min_granularity = limit; + + sysctl_sched_latency *= factor; + if (sysctl_sched_latency > limit) + sysctl_sched_latency = limit; + +- sysctl_sched_runtime_limit = sysctl_sched_latency; +- sysctl_sched_wakeup_granularity = sysctl_sched_min_granularity / 2; ++ sysctl_sched_wakeup_granularity *= factor; ++ sysctl_sched_batch_wakeup_granularity *= factor; + } + + #ifdef CONFIG_SMP + /* + * This is how migration works: +@@ -4946,11 +5059,11 @@ static inline void sched_init_granularit + * Change a given task's CPU affinity. Migrate the thread to a + * proper CPU and schedule it away if the CPU it's executing on + * is removed from the allowed bitmask. + * + * NOTE: the caller must have a valid reference to the task, the +- * task must not exit() & deallocate itself prematurely. The ++ * task must not exit() & deallocate itself prematurely. The + * call is not atomic; no spinlocks may be held. + */ + int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask) + { + struct migration_req req; +@@ -4983,11 +5096,11 @@ out: + return ret; + } + EXPORT_SYMBOL_GPL(set_cpus_allowed); + + /* +- * Move (not current) task off this cpu, onto dest cpu. We're doing ++ * Move (not current) task off this cpu, onto dest cpu. We're doing + * this because either it can't run here any more (set_cpus_allowed() + * away from this CPU, or CPU going down), or because we're + * attempting to rebalance this task on exec (sched_exec). + * + * So we race with normal scheduler movements, but that's OK, as long +@@ -5045,10 +5158,12 @@ static int migration_thread(void *data) + set_current_state(TASK_INTERRUPTIBLE); + while (!kthread_should_stop()) { + struct migration_req *req; + struct list_head *head; + ++ try_to_freeze(); ++ + spin_lock_irq(&rq->lock); + + if (cpu_is_offline(cpu)) { + spin_unlock_irq(&rq->lock); + goto wait_to_die; +@@ -5089,50 +5204,69 @@ wait_to_die: + __set_current_state(TASK_RUNNING); + return 0; + } + + #ifdef CONFIG_HOTPLUG_CPU ++ ++static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu) ++{ ++ int ret; ++ ++ local_irq_disable(); ++ ret = __migrate_task(p, src_cpu, dest_cpu); ++ local_irq_enable(); ++ return ret; ++} ++ + /* +- * Figure out where task on dead CPU should go, use force if neccessary. ++ * Figure out where task on dead CPU should go, use force if necessary. + * NOTE: interrupts should be disabled by the caller + */ + static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p) + { + unsigned long flags; + cpumask_t mask; + struct rq *rq; + int dest_cpu; + +-restart: +- /* On same node? */ +- mask = node_to_cpumask(cpu_to_node(dead_cpu)); +- cpus_and(mask, mask, p->cpus_allowed); +- dest_cpu = any_online_cpu(mask); +- +- /* On any allowed CPU? */ +- if (dest_cpu == NR_CPUS) +- dest_cpu = any_online_cpu(p->cpus_allowed); ++ do { ++ /* On same node? */ ++ mask = node_to_cpumask(cpu_to_node(dead_cpu)); ++ cpus_and(mask, mask, p->cpus_allowed); ++ dest_cpu = any_online_cpu(mask); ++ ++ /* On any allowed CPU? */ ++ if (dest_cpu == NR_CPUS) ++ dest_cpu = any_online_cpu(p->cpus_allowed); ++ ++ /* No more Mr. Nice Guy. */ ++ if (dest_cpu == NR_CPUS) { ++ cpumask_t cpus_allowed = cpuset_cpus_allowed_locked(p); ++ /* ++ * Try to stay on the same cpuset, where the ++ * current cpuset may be a subset of all cpus. ++ * The cpuset_cpus_allowed_locked() variant of ++ * cpuset_cpus_allowed() will not block. It must be ++ * called within calls to cpuset_lock/cpuset_unlock. ++ */ ++ rq = task_rq_lock(p, &flags); ++ p->cpus_allowed = cpus_allowed; ++ dest_cpu = any_online_cpu(p->cpus_allowed); ++ task_rq_unlock(rq, &flags); + +- /* No more Mr. Nice Guy. */ +- if (dest_cpu == NR_CPUS) { +- rq = task_rq_lock(p, &flags); +- cpus_setall(p->cpus_allowed); +- dest_cpu = any_online_cpu(p->cpus_allowed); +- task_rq_unlock(rq, &flags); +- +- /* +- * Don't tell them about moving exiting tasks or +- * kernel threads (both mm NULL), since they never +- * leave kernel. +- */ +- if (p->mm && printk_ratelimit()) +- printk(KERN_INFO "process %d (%s) no " +- "longer affine to cpu%d\n", +- p->pid, p->comm, dead_cpu); +- } +- if (!__migrate_task(p, dead_cpu, dest_cpu)) +- goto restart; ++ /* ++ * Don't tell them about moving exiting tasks or ++ * kernel threads (both mm NULL), since they never ++ * leave kernel. ++ */ ++ if (p->mm && printk_ratelimit()) { ++ printk(KERN_INFO "process %d (%s) no " ++ "longer affine to cpu%d\n", ++ task_pid_nr(p), p->comm, dead_cpu); ++ } ++ } ++ } while (!__migrate_task_irq(p, dead_cpu, dest_cpu)); + } + + /* + * While a dead CPU has no uninterruptible tasks queued at this point, + * it might still have a nonzero ->nr_uninterruptible counter, because +@@ -5156,27 +5290,27 @@ static void migrate_nr_uninterruptible(s + /* Run through task list and migrate tasks from the dead cpu. */ + static void migrate_live_tasks(int src_cpu) + { + struct task_struct *p, *t; + +- write_lock_irq(&tasklist_lock); ++ read_lock(&tasklist_lock); + + do_each_thread(t, p) { + if (p == current) + continue; + + if (task_cpu(p) == src_cpu) + move_task_off_dead_cpu(src_cpu, p); + } while_each_thread(t, p); + +- write_unlock_irq(&tasklist_lock); ++ read_unlock(&tasklist_lock); + } + + /* + * Schedules idle task to be the next runnable task on current CPU. +- * It does so by boosting its priority to highest possible and adding it to +- * the _front_ of the runqueue. Used by CPU offline code. ++ * It does so by boosting its priority to highest possible. ++ * Used by CPU offline code. + */ + void sched_idle_next(void) + { + int this_cpu = smp_processor_id(); + struct rq *rq = cpu_rq(this_cpu); +@@ -5192,12 +5326,12 @@ void sched_idle_next(void) + */ + spin_lock_irqsave(&rq->lock, flags); + + __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1); + +- /* Add idle task to the _front_ of its priority queue: */ +- activate_idle_task(p, rq); ++ update_rq_clock(rq); ++ activate_task(rq, p, 0); + + spin_unlock_irqrestore(&rq->lock, flags); + } + + /* +@@ -5219,26 +5353,25 @@ void idle_task_exit(void) + static void migrate_dead(unsigned int dead_cpu, struct task_struct *p) + { + struct rq *rq = cpu_rq(dead_cpu); + + /* Must be exiting, otherwise would be on tasklist. */ +- BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD); ++ BUG_ON(!p->exit_state); + + /* Cannot have done final schedule yet: would have vanished. */ + BUG_ON(p->state == TASK_DEAD); + + get_task_struct(p); + + /* + * Drop lock around migration; if someone else moves it, +- * that's OK. No task can be added to this CPU, so iteration is ++ * that's OK. No task can be added to this CPU, so iteration is + * fine. +- * NOTE: interrupts should be left disabled --dev@ + */ +- spin_unlock(&rq->lock); ++ spin_unlock_irq(&rq->lock); + move_task_off_dead_cpu(dead_cpu, p); +- spin_lock(&rq->lock); ++ spin_lock_irq(&rq->lock); + + put_task_struct(p); + } + + /* release_task() removes task from tasklist, so we won't find dead tasks. */ +@@ -5265,34 +5398,52 @@ static void migrate_dead_tasks(unsigned + static struct ctl_table sd_ctl_dir[] = { + { + .procname = "sched_domain", + .mode = 0555, + }, +- {0,}, ++ {0, }, + }; + + static struct ctl_table sd_ctl_root[] = { + { + .ctl_name = CTL_KERN, + .procname = "kernel", + .mode = 0555, + .child = sd_ctl_dir, + }, +- {0,}, ++ {0, }, + }; + + static struct ctl_table *sd_alloc_ctl_entry(int n) + { + struct ctl_table *entry = +- kmalloc(n * sizeof(struct ctl_table), GFP_KERNEL); +- +- BUG_ON(!entry); +- memset(entry, 0, n * sizeof(struct ctl_table)); ++ kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL); + + return entry; + } + ++static void sd_free_ctl_entry(struct ctl_table **tablep) ++{ ++ struct ctl_table *entry; ++ ++ /* ++ * In the intermediate directories, both the child directory and ++ * procname are dynamically allocated and could fail but the mode ++ * will always be set. In the lowest directory the names are ++ * static strings and all have proc handlers. ++ */ ++ for (entry = *tablep; entry->mode; entry++) { ++ if (entry->child) ++ sd_free_ctl_entry(&entry->child); ++ if (entry->proc_handler == NULL) ++ kfree(entry->procname); ++ } ++ ++ kfree(*tablep); ++ *tablep = NULL; ++} ++ + static void + set_table_entry(struct ctl_table *entry, + const char *procname, void *data, int maxlen, + mode_t mode, proc_handler *proc_handler) + { +@@ -5306,10 +5457,13 @@ set_table_entry(struct ctl_table *entry, + static struct ctl_table * + sd_alloc_ctl_domain_table(struct sched_domain *sd) + { + struct ctl_table *table = sd_alloc_ctl_entry(12); + ++ if (table == NULL) ++ return NULL; ++ + set_table_entry(&table[0], "min_interval", &sd->min_interval, + sizeof(long), 0644, proc_doulongvec_minmax); + set_table_entry(&table[1], "max_interval", &sd->max_interval, + sizeof(long), 0644, proc_doulongvec_minmax); + set_table_entry(&table[2], "busy_idx", &sd->busy_idx, +@@ -5329,10 +5483,11 @@ sd_alloc_ctl_domain_table(struct sched_d + set_table_entry(&table[9], "cache_nice_tries", + &sd->cache_nice_tries, + sizeof(int), 0644, proc_dointvec_minmax); + set_table_entry(&table[10], "flags", &sd->flags, + sizeof(int), 0644, proc_dointvec_minmax); ++ /* &table[11] is terminator */ + + return table; + } + + static ctl_table *sd_alloc_ctl_cpu_table(int cpu) +@@ -5343,10 +5498,12 @@ static ctl_table *sd_alloc_ctl_cpu_table + char buf[32]; + + for_each_domain(cpu, sd) + domain_num++; + entry = table = sd_alloc_ctl_entry(domain_num + 1); ++ if (table == NULL) ++ return NULL; + + i = 0; + for_each_domain(cpu, sd) { + snprintf(buf, 32, "domain%d", i); + entry->procname = kstrdup(buf, GFP_KERNEL); +@@ -5357,28 +5514,48 @@ static ctl_table *sd_alloc_ctl_cpu_table + } + return table; + } + + static struct ctl_table_header *sd_sysctl_header; +-static void init_sched_domain_sysctl(void) ++static void register_sched_domain_sysctl(void) + { + int i, cpu_num = num_online_cpus(); + struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1); + char buf[32]; + ++ WARN_ON(sd_ctl_dir[0].child); + sd_ctl_dir[0].child = entry; + +- for (i = 0; i < cpu_num; i++, entry++) { ++ if (entry == NULL) ++ return; ++ ++ for_each_online_cpu(i) { + snprintf(buf, 32, "cpu%d", i); + entry->procname = kstrdup(buf, GFP_KERNEL); + entry->mode = 0555; + entry->child = sd_alloc_ctl_cpu_table(i); ++ entry++; + } ++ ++ WARN_ON(sd_sysctl_header); + sd_sysctl_header = register_sysctl_table(sd_ctl_root); + } ++ ++/* may be called multiple times per register */ ++static void unregister_sched_domain_sysctl(void) ++{ ++ if (sd_sysctl_header) ++ unregister_sysctl_table(sd_sysctl_header); ++ sd_sysctl_header = NULL; ++ if (sd_ctl_dir[0].child) ++ sd_free_ctl_entry(&sd_ctl_dir[0].child); ++} + #else +-static void init_sched_domain_sysctl(void) ++static void register_sched_domain_sysctl(void) ++{ ++} ++static void unregister_sched_domain_sysctl(void) + { + } + #endif + + /* +@@ -5401,57 +5578,62 @@ migration_call(struct notifier_block *nf + case CPU_UP_PREPARE: + case CPU_UP_PREPARE_FROZEN: + p = kthread_create(migration_thread, hcpu, "migration/%d", cpu); + if (IS_ERR(p)) + return NOTIFY_BAD; ++ p->flags |= PF_NOFREEZE; + kthread_bind(p, cpu); + /* Must be high prio: stop_machine expects to yield to it. */ + rq = task_rq_lock(p, &flags); + __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1); + task_rq_unlock(rq, &flags); + cpu_rq(cpu)->migration_thread = p; + break; + + case CPU_ONLINE: + case CPU_ONLINE_FROZEN: +- /* Strictly unneccessary, as first user will wake it. */ ++ /* Strictly unnecessary, as first user will wake it. */ + wake_up_process(cpu_rq(cpu)->migration_thread); + break; + + #ifdef CONFIG_HOTPLUG_CPU + case CPU_UP_CANCELED: + case CPU_UP_CANCELED_FROZEN: + if (!cpu_rq(cpu)->migration_thread) + break; +- /* Unbind it from offline cpu so it can run. Fall thru. */ ++ /* Unbind it from offline cpu so it can run. Fall thru. */ + kthread_bind(cpu_rq(cpu)->migration_thread, + any_online_cpu(cpu_online_map)); + kthread_stop(cpu_rq(cpu)->migration_thread); + cpu_rq(cpu)->migration_thread = NULL; + break; + + case CPU_DEAD: + case CPU_DEAD_FROZEN: ++ cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */ + migrate_live_tasks(cpu); + rq = cpu_rq(cpu); + kthread_stop(rq->migration_thread); + rq->migration_thread = NULL; + /* Idle task back to normal (off runqueue, low prio) */ +- rq = task_rq_lock(rq->idle, &flags); ++ spin_lock_irq(&rq->lock); + update_rq_clock(rq); + deactivate_task(rq, rq->idle, 0); + rq->idle->static_prio = MAX_PRIO; + __setscheduler(rq, rq->idle, SCHED_NORMAL, 0); + rq->idle->sched_class = &idle_sched_class; + migrate_dead_tasks(cpu); +- task_rq_unlock(rq, &flags); ++ spin_unlock_irq(&rq->lock); ++ cpuset_unlock(); + migrate_nr_uninterruptible(rq); + BUG_ON(rq->nr_running != 0); + +- /* No need to migrate the tasks: it was best-effort if +- * they didn't take sched_hotcpu_mutex. Just wake up +- * the requestors. */ ++ /* ++ * No need to migrate the tasks: it was best-effort if ++ * they didn't take sched_hotcpu_mutex. Just wake up ++ * the requestors. ++ */ + spin_lock_irq(&rq->lock); + while (!list_empty(&rq->migration_queue)) { + struct migration_req *req; + + req = list_entry(rq->migration_queue.next, +@@ -5475,125 +5657,125 @@ migration_call(struct notifier_block *nf + static struct notifier_block __cpuinitdata migration_notifier = { + .notifier_call = migration_call, + .priority = 10 + }; + +-int __init migration_init(void) ++void __init migration_init(void) + { + void *cpu = (void *)(long)smp_processor_id(); + int err; + + /* Start one for the boot CPU: */ + err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu); + BUG_ON(err == NOTIFY_BAD); + migration_call(&migration_notifier, CPU_ONLINE, cpu); + register_cpu_notifier(&migration_notifier); +- +- return 0; + } + #endif + + #ifdef CONFIG_SMP + + /* Number of possible processor ids */ + int nr_cpu_ids __read_mostly = NR_CPUS; + EXPORT_SYMBOL(nr_cpu_ids); + +-#undef SCHED_DOMAIN_DEBUG +-#ifdef SCHED_DOMAIN_DEBUG +-static void sched_domain_debug(struct sched_domain *sd, int cpu) +-{ +- int level = 0; ++#ifdef CONFIG_SCHED_DEBUG + +- if (!sd) { +- printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu); +- return; ++static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level) ++{ ++ struct sched_group *group = sd->groups; ++ cpumask_t groupmask; ++ char str[NR_CPUS]; ++ ++ cpumask_scnprintf(str, NR_CPUS, sd->span); ++ cpus_clear(groupmask); ++ ++ printk(KERN_DEBUG "%*s domain %d: ", level, "", level); ++ ++ if (!(sd->flags & SD_LOAD_BALANCE)) { ++ printk("does not load-balance\n"); ++ if (sd->parent) ++ printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain" ++ " has parent"); ++ return -1; + } + +- printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu); ++ printk(KERN_CONT "span %s\n", str); + ++ if (!cpu_isset(cpu, sd->span)) { ++ printk(KERN_ERR "ERROR: domain->span does not contain " ++ "CPU%d\n", cpu); ++ } ++ if (!cpu_isset(cpu, group->cpumask)) { ++ printk(KERN_ERR "ERROR: domain->groups does not contain" ++ " CPU%d\n", cpu); ++ } ++ ++ printk(KERN_DEBUG "%*s groups:", level + 1, ""); + do { +- int i; +- char str[NR_CPUS]; +- struct sched_group *group = sd->groups; +- cpumask_t groupmask; +- +- cpumask_scnprintf(str, NR_CPUS, sd->span); +- cpus_clear(groupmask); +- +- printk(KERN_DEBUG); +- for (i = 0; i < level + 1; i++) +- printk(" "); +- printk("domain %d: ", level); +- +- if (!(sd->flags & SD_LOAD_BALANCE)) { +- printk("does not load-balance\n"); +- if (sd->parent) +- printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain" +- " has parent"); ++ if (!group) { ++ printk("\n"); ++ printk(KERN_ERR "ERROR: group is NULL\n"); + break; + } + +- printk("span %s\n", str); ++ if (!group->__cpu_power) { ++ printk(KERN_CONT "\n"); ++ printk(KERN_ERR "ERROR: domain->cpu_power not " ++ "set\n"); ++ break; ++ } + +- if (!cpu_isset(cpu, sd->span)) +- printk(KERN_ERR "ERROR: domain->span does not contain " +- "CPU%d\n", cpu); +- if (!cpu_isset(cpu, group->cpumask)) +- printk(KERN_ERR "ERROR: domain->groups does not contain" +- " CPU%d\n", cpu); +- +- printk(KERN_DEBUG); +- for (i = 0; i < level + 2; i++) +- printk(" "); +- printk("groups:"); +- do { +- if (!group) { +- printk("\n"); +- printk(KERN_ERR "ERROR: group is NULL\n"); +- break; +- } ++ if (!cpus_weight(group->cpumask)) { ++ printk(KERN_CONT "\n"); ++ printk(KERN_ERR "ERROR: empty group\n"); ++ break; ++ } + +- if (!group->__cpu_power) { +- printk("\n"); +- printk(KERN_ERR "ERROR: domain->cpu_power not " +- "set\n"); +- } ++ if (cpus_intersects(groupmask, group->cpumask)) { ++ printk(KERN_CONT "\n"); ++ printk(KERN_ERR "ERROR: repeated CPUs\n"); ++ break; ++ } + +- if (!cpus_weight(group->cpumask)) { +- printk("\n"); +- printk(KERN_ERR "ERROR: empty group\n"); +- } ++ cpus_or(groupmask, groupmask, group->cpumask); + +- if (cpus_intersects(groupmask, group->cpumask)) { +- printk("\n"); +- printk(KERN_ERR "ERROR: repeated CPUs\n"); +- } ++ cpumask_scnprintf(str, NR_CPUS, group->cpumask); ++ printk(KERN_CONT " %s", str); ++ ++ group = group->next; ++ } while (group != sd->groups); ++ printk(KERN_CONT "\n"); ++ ++ if (!cpus_equal(sd->span, groupmask)) ++ printk(KERN_ERR "ERROR: groups don't span domain->span\n"); ++ ++ if (sd->parent && !cpus_subset(groupmask, sd->parent->span)) ++ printk(KERN_ERR "ERROR: parent span is not a superset " ++ "of domain->span\n"); ++ return 0; ++} + +- cpus_or(groupmask, groupmask, group->cpumask); ++static void sched_domain_debug(struct sched_domain *sd, int cpu) ++{ ++ int level = 0; + +- cpumask_scnprintf(str, NR_CPUS, group->cpumask); +- printk(" %s", str); ++ if (!sd) { ++ printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu); ++ return; ++ } + +- group = group->next; +- } while (group != sd->groups); +- printk("\n"); +- +- if (!cpus_equal(sd->span, groupmask)) +- printk(KERN_ERR "ERROR: groups don't span " +- "domain->span\n"); ++ printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu); + ++ for (;;) { ++ if (sched_domain_debug_one(sd, cpu, level)) ++ break; + level++; + sd = sd->parent; + if (!sd) +- continue; +- +- if (!cpus_subset(groupmask, sd->span)) +- printk(KERN_ERR "ERROR: parent span is not a superset " +- "of domain->span\n"); +- +- } while (sd); ++ break; ++ } + } + #else + # define sched_domain_debug(sd, cpu) do { } while (0) + #endif + +@@ -5698,11 +5880,11 @@ static int __init isolated_cpu_setup(cha + if (ints[i] < NR_CPUS) + cpu_set(ints[i], cpu_isolated_map); + return 1; + } + +-__setup ("isolcpus=", isolated_cpu_setup); ++__setup("isolcpus=", isolated_cpu_setup); + + /* + * init_sched_build_groups takes the cpumask we wish to span, and a pointer + * to a function which identifies what group(along with sched group) a CPU + * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS +@@ -5755,11 +5937,11 @@ init_sched_build_groups(cpumask_t span, + /** + * find_next_best_node - find the next node to include in a sched_domain + * @node: node whose sched_domain we're building + * @used_nodes: nodes already in the sched_domain + * +- * Find the next node to include in a given scheduling domain. Simply ++ * Find the next node to include in a given scheduling domain. Simply + * finds the closest node not already in the @used_nodes map. + * + * Should use nodemask_t. + */ + static int find_next_best_node(int node, unsigned long *used_nodes) +@@ -5795,11 +5977,11 @@ static int find_next_best_node(int node, + /** + * sched_domain_node_span - get a cpumask for a node's sched_domain + * @node: node whose cpumask we're constructing + * @size: number of nodes to include in this span + * +- * Given a node, construct a good cpumask for its sched_domain to span. It ++ * Given a node, construct a good cpumask for its sched_domain to span. It + * should be one that prevents unnecessary balancing, but also spreads tasks + * out optimally. + */ + static cpumask_t sched_domain_node_span(int node) + { +@@ -5832,12 +6014,12 @@ int sched_smt_power_savings = 0, sched_m + */ + #ifdef CONFIG_SCHED_SMT + static DEFINE_PER_CPU(struct sched_domain, cpu_domains); + static DEFINE_PER_CPU(struct sched_group, sched_group_cpus); + +-static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, +- struct sched_group **sg) ++static int ++cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg) + { + if (sg) + *sg = &per_cpu(sched_group_cpus, cpu); + return cpu; + } +@@ -5850,44 +6032,44 @@ static int cpu_to_cpu_group(int cpu, con + static DEFINE_PER_CPU(struct sched_domain, core_domains); + static DEFINE_PER_CPU(struct sched_group, sched_group_core); + #endif + + #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT) +-static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map, +- struct sched_group **sg) ++static int ++cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg) + { + int group; +- cpumask_t mask = cpu_sibling_map[cpu]; ++ cpumask_t mask = cpu_sibling_map(cpu); + cpus_and(mask, mask, *cpu_map); + group = first_cpu(mask); + if (sg) + *sg = &per_cpu(sched_group_core, group); + return group; + } + #elif defined(CONFIG_SCHED_MC) +-static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map, +- struct sched_group **sg) ++static int ++cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg) + { + if (sg) + *sg = &per_cpu(sched_group_core, cpu); + return cpu; + } + #endif + + static DEFINE_PER_CPU(struct sched_domain, phys_domains); + static DEFINE_PER_CPU(struct sched_group, sched_group_phys); + +-static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, +- struct sched_group **sg) ++static int ++cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg) + { + int group; + #ifdef CONFIG_SCHED_MC + cpumask_t mask = cpu_coregroup_map(cpu); + cpus_and(mask, mask, *cpu_map); + group = first_cpu(mask); + #elif defined(CONFIG_SCHED_SMT) +- cpumask_t mask = cpu_sibling_map[cpu]; ++ cpumask_t mask = cpu_sibling_map(cpu); + cpus_and(mask, mask, *cpu_map); + group = first_cpu(mask); + #else + group = cpu; + #endif +@@ -5927,28 +6109,27 @@ static void init_numa_sched_groups_power + struct sched_group *sg = group_head; + int j; + + if (!sg) + return; +-next_sg: +- for_each_cpu_mask(j, sg->cpumask) { +- struct sched_domain *sd; ++ do { ++ for_each_cpu_mask(j, sg->cpumask) { ++ struct sched_domain *sd; + +- sd = &per_cpu(phys_domains, j); +- if (j != first_cpu(sd->groups->cpumask)) { +- /* +- * Only add "power" once for each +- * physical package. +- */ +- continue; +- } ++ sd = &per_cpu(phys_domains, j); ++ if (j != first_cpu(sd->groups->cpumask)) { ++ /* ++ * Only add "power" once for each ++ * physical package. ++ */ ++ continue; ++ } + +- sg_inc_cpu_power(sg, sd->groups->__cpu_power); +- } +- sg = sg->next; +- if (sg != group_head) +- goto next_sg; ++ sg_inc_cpu_power(sg, sd->groups->__cpu_power); ++ } ++ sg = sg->next; ++ } while (sg != group_head); + } + #endif + + #ifdef CONFIG_NUMA + /* Free memory allocated for various sched_group structures */ +@@ -6055,12 +6236,12 @@ static int build_sched_domains(const cpu + int sd_allnodes = 0; + + /* + * Allocate the per-node list of sched groups + */ +- sched_group_nodes = kzalloc(sizeof(struct sched_group *)*MAX_NUMNODES, +- GFP_KERNEL); ++ sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *), ++ GFP_KERNEL); + if (!sched_group_nodes) { + printk(KERN_WARNING "Can not alloc sched group node list\n"); + return -ENOMEM; + } + sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes; +@@ -6118,22 +6299,22 @@ static int build_sched_domains(const cpu + + #ifdef CONFIG_SCHED_SMT + p = sd; + sd = &per_cpu(cpu_domains, i); + *sd = SD_SIBLING_INIT; +- sd->span = cpu_sibling_map[i]; ++ sd->span = cpu_sibling_map(i); + cpus_and(sd->span, sd->span, *cpu_map); + sd->parent = p; + p->child = sd; + cpu_to_cpu_group(i, cpu_map, &sd->groups); + #endif + } + + #ifdef CONFIG_SCHED_SMT + /* Set up CPU (sibling) groups */ + for_each_cpu_mask(i, *cpu_map) { +- cpumask_t this_sibling_map = cpu_sibling_map[i]; ++ cpumask_t this_sibling_map = cpu_sibling_map(i); + cpus_and(this_sibling_map, this_sibling_map, *cpu_map); + if (i != first_cpu(this_sibling_map)) + continue; + + init_sched_build_groups(this_sibling_map, cpu_map, +@@ -6291,26 +6472,37 @@ static int build_sched_domains(const cpu + error: + free_sched_groups(cpu_map); + return -ENOMEM; + #endif + } ++ ++static cpumask_t *doms_cur; /* current sched domains */ ++static int ndoms_cur; /* number of sched domains in 'doms_cur' */ ++ ++/* ++ * Special case: If a kmalloc of a doms_cur partition (array of ++ * cpumask_t) fails, then fallback to a single sched domain, ++ * as determined by the single cpumask_t fallback_doms. ++ */ ++static cpumask_t fallback_doms; ++ + /* +- * Set up scheduler domains and groups. Callers must hold the hotplug lock. ++ * Set up scheduler domains and groups. Callers must hold the hotplug lock. ++ * For now this just excludes isolated cpus, but could be used to ++ * exclude other special cases in the future. + */ + static int arch_init_sched_domains(const cpumask_t *cpu_map) + { +- cpumask_t cpu_default_map; + int err; + +- /* +- * Setup mask for cpus without special case scheduling requirements. +- * For now this just excludes isolated cpus, but could be used to +- * exclude other special cases in the future. +- */ +- cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map); +- +- err = build_sched_domains(&cpu_default_map); ++ ndoms_cur = 1; ++ doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL); ++ if (!doms_cur) ++ doms_cur = &fallback_doms; ++ cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map); ++ err = build_sched_domains(doms_cur); ++ register_sched_domain_sysctl(); + + return err; + } + + static void arch_destroy_sched_domains(const cpumask_t *cpu_map) +@@ -6324,41 +6516,83 @@ static void arch_destroy_sched_domains(c + */ + static void detach_destroy_domains(const cpumask_t *cpu_map) + { + int i; + ++ unregister_sched_domain_sysctl(); ++ + for_each_cpu_mask(i, *cpu_map) + cpu_attach_domain(NULL, i); + synchronize_sched(); + arch_destroy_sched_domains(cpu_map); + } + + /* +- * Partition sched domains as specified by the cpumasks below. +- * This attaches all cpus from the cpumasks to the NULL domain, +- * waits for a RCU quiescent period, recalculates sched +- * domain information and then attaches them back to the +- * correct sched domains ++ * Partition sched domains as specified by the 'ndoms_new' ++ * cpumasks in the array doms_new[] of cpumasks. This compares ++ * doms_new[] to the current sched domain partitioning, doms_cur[]. ++ * It destroys each deleted domain and builds each new domain. ++ * ++ * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'. ++ * The masks don't intersect (don't overlap.) We should setup one ++ * sched domain for each mask. CPUs not in any of the cpumasks will ++ * not be load balanced. If the same cpumask appears both in the ++ * current 'doms_cur' domains and in the new 'doms_new', we can leave ++ * it as it is. ++ * ++ * The passed in 'doms_new' should be kmalloc'd. This routine takes ++ * ownership of it and will kfree it when done with it. If the caller ++ * failed the kmalloc call, then it can pass in doms_new == NULL, ++ * and partition_sched_domains() will fallback to the single partition ++ * 'fallback_doms'. ++ * + * Call with hotplug lock held + */ +-int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2) ++void partition_sched_domains(int ndoms_new, cpumask_t *doms_new) + { +- cpumask_t change_map; +- int err = 0; ++ int i, j; + +- cpus_and(*partition1, *partition1, cpu_online_map); +- cpus_and(*partition2, *partition2, cpu_online_map); +- cpus_or(change_map, *partition1, *partition2); +- +- /* Detach sched domains from all of the affected cpus */ +- detach_destroy_domains(&change_map); +- if (!cpus_empty(*partition1)) +- err = build_sched_domains(partition1); +- if (!err && !cpus_empty(*partition2)) +- err = build_sched_domains(partition2); ++ /* always unregister in case we don't destroy any domains */ ++ unregister_sched_domain_sysctl(); + +- return err; ++ if (doms_new == NULL) { ++ ndoms_new = 1; ++ doms_new = &fallback_doms; ++ cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map); ++ } ++ ++ /* Destroy deleted domains */ ++ for (i = 0; i < ndoms_cur; i++) { ++ for (j = 0; j < ndoms_new; j++) { ++ if (cpus_equal(doms_cur[i], doms_new[j])) ++ goto match1; ++ } ++ /* no match - a current sched domain not in new doms_new[] */ ++ detach_destroy_domains(doms_cur + i); ++match1: ++ ; ++ } ++ ++ /* Build new domains */ ++ for (i = 0; i < ndoms_new; i++) { ++ for (j = 0; j < ndoms_cur; j++) { ++ if (cpus_equal(doms_new[i], doms_cur[j])) ++ goto match2; ++ } ++ /* no match - add a new doms_new */ ++ build_sched_domains(doms_new + i); ++match2: ++ ; ++ } ++ ++ /* Remember the new sched domains */ ++ if (doms_cur != &fallback_doms) ++ kfree(doms_cur); ++ doms_cur = doms_new; ++ ndoms_cur = ndoms_new; ++ ++ register_sched_domain_sysctl(); + } + + #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) + static int arch_reinit_sched_domains(void) + { +@@ -6434,11 +6668,11 @@ int sched_create_sysfs_power_savings_ent + return err; + } + #endif + + /* +- * Force a reinitialization of the sched domains hierarchy. The domains ++ * Force a reinitialization of the sched domains hierarchy. The domains + * and groups cannot be updated in place without racing with the balancing + * code, so we temporarily attach all running cpus to the NULL domain + * which will prevent rebalancing while the sched domains are recalculated. + */ + static int update_sched_domains(struct notifier_block *nfb, +@@ -6485,12 +6719,10 @@ void __init sched_init_smp(void) + cpu_set(smp_processor_id(), non_isolated_cpus); + mutex_unlock(&sched_hotcpu_mutex); + /* XXX: Theoretical race here - CPU may be hotplugged now */ + hotcpu_notifier(update_sched_domains, 0); + +- init_sched_domain_sysctl(); +- + /* Move init over to a non-isolated CPU */ + if (set_cpus_allowed(current, non_isolated_cpus) < 0) + BUG(); + sched_init_granularity(); + } +@@ -6501,40 +6733,29 @@ void __init sched_init_smp(void) + } + #endif /* CONFIG_SMP */ + + int in_sched_functions(unsigned long addr) + { +- /* Linker adds these: start and end of __sched functions */ +- extern char __sched_text_start[], __sched_text_end[]; +- + return in_lock_functions(addr) || + (addr >= (unsigned long)__sched_text_start + && addr < (unsigned long)__sched_text_end); + } + +-static inline void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq) ++static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq) + { + cfs_rq->tasks_timeline = RB_ROOT; +- cfs_rq->fair_clock = 1; + #ifdef CONFIG_FAIR_GROUP_SCHED + cfs_rq->rq = rq; + #endif ++ cfs_rq->min_vruntime = (u64)(-(1LL << 20)); + } + + void __init sched_init(void) + { +- u64 now = sched_clock(); + int highest_cpu = 0; + int i, j; + +- /* +- * Link up the scheduling class hierarchy: +- */ +- rt_sched_class.next = &fair_sched_class; +- fair_sched_class.next = &idle_sched_class; +- idle_sched_class.next = NULL; +- + for_each_possible_cpu(i) { + struct rt_prio_array *array; + struct rq *rq; + + rq = cpu_rq(i); +@@ -6543,14 +6764,32 @@ void __init sched_init(void) + rq->nr_running = 0; + rq->clock = 1; + init_cfs_rq(&rq->cfs, rq); + #ifdef CONFIG_FAIR_GROUP_SCHED + INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); +- list_add(&rq->cfs.leaf_cfs_rq_list, &rq->leaf_cfs_rq_list); ++ { ++ struct cfs_rq *cfs_rq = &per_cpu(init_cfs_rq, i); ++ struct sched_entity *se = ++ &per_cpu(init_sched_entity, i); ++ ++ init_cfs_rq_p[i] = cfs_rq; ++ init_cfs_rq(cfs_rq, rq); ++ cfs_rq->tg = &init_task_group; ++ list_add(&cfs_rq->leaf_cfs_rq_list, ++ &rq->leaf_cfs_rq_list); ++ ++ init_sched_entity_p[i] = se; ++ se->cfs_rq = &rq->cfs; ++ se->my_q = cfs_rq; ++ se->load.weight = init_task_group_load; ++ se->load.inv_weight = ++ div64_64(1ULL<<32, init_task_group_load); ++ se->parent = NULL; ++ } ++ init_task_group.shares = init_task_group_load; ++ spin_lock_init(&init_task_group.lock); + #endif +- rq->ls.load_update_last = now; +- rq->ls.load_update_start = now; + + for (j = 0; j < CPU_LOAD_IDX_MAX; j++) + rq->cpu_load[j] = 0; + #ifdef CONFIG_SMP + rq->sd = NULL; +@@ -6631,30 +6870,44 @@ void __might_sleep(char *file, int line) + } + EXPORT_SYMBOL(__might_sleep); + #endif + + #ifdef CONFIG_MAGIC_SYSRQ ++static void normalize_task(struct rq *rq, struct task_struct *p) ++{ ++ int on_rq; ++ update_rq_clock(rq); ++ on_rq = p->se.on_rq; ++ if (on_rq) ++ deactivate_task(rq, p, 0); ++ __setscheduler(rq, p, SCHED_NORMAL, 0); ++ if (on_rq) { ++ activate_task(rq, p, 0); ++ resched_task(rq->curr); ++ } ++} ++ + void normalize_rt_tasks(void) + { + struct task_struct *g, *p; + unsigned long flags; + struct rq *rq; +- int on_rq; + + read_lock_irq(&tasklist_lock); + do_each_thread(g, p) { +- p->se.fair_key = 0; +- p->se.wait_runtime = 0; ++ /* ++ * Only normalize user tasks: ++ */ ++ if (!p->mm) ++ continue; ++ + p->se.exec_start = 0; +- p->se.wait_start_fair = 0; +- p->se.sleep_start_fair = 0; + #ifdef CONFIG_SCHEDSTATS + p->se.wait_start = 0; + p->se.sleep_start = 0; + p->se.block_start = 0; + #endif +- task_rq(p)->cfs.fair_clock = 0; + task_rq(p)->clock = 0; + + if (!rt_task(p)) { + /* + * Renice negative nice level userspace +@@ -6665,30 +6918,13 @@ void normalize_rt_tasks(void) + continue; + } + + spin_lock_irqsave(&p->pi_lock, flags); + rq = __task_rq_lock(p); +-#ifdef CONFIG_SMP +- /* +- * Do not touch the migration thread: +- */ +- if (p == rq->migration_thread) +- goto out_unlock; +-#endif + +- update_rq_clock(rq); +- on_rq = p->se.on_rq; +- if (on_rq) +- deactivate_task(rq, p, 0); +- __setscheduler(rq, p, SCHED_NORMAL, 0); +- if (on_rq) { +- activate_task(rq, p, 0); +- resched_task(rq->curr); +- } +-#ifdef CONFIG_SMP +- out_unlock: +-#endif ++ normalize_task(rq, p); ++ + __task_rq_unlock(rq); + spin_unlock_irqrestore(&p->pi_lock, flags); + } while_each_thread(g, p); + + read_unlock_irq(&tasklist_lock); +@@ -6722,12 +6958,12 @@ struct task_struct *curr_task(int cpu) + * set_curr_task - set the current task for a given cpu. + * @cpu: the processor in question. + * @p: the task pointer to set. + * + * Description: This function must only be used when non-maskable interrupts +- * are serviced on a separate stack. It allows the architecture to switch the +- * notion of the current task on a cpu in a non-blocking manner. This function ++ * are serviced on a separate stack. It allows the architecture to switch the ++ * notion of the current task on a cpu in a non-blocking manner. This function + * must be called with all CPU's synchronized, and interrupts disabled, the + * and caller must save the original value of the current task (see + * curr_task() above) and restore that value before reenabling interrupts and + * re-starting the system. + * +@@ -6737,5 +6973,427 @@ void set_curr_task(int cpu, struct task_ + { + cpu_curr(cpu) = p; + } + + #endif ++ ++#ifdef CONFIG_FAIR_GROUP_SCHED ++ ++/* allocate runqueue etc for a new task group */ ++struct task_group *sched_create_group(void) ++{ ++ struct task_group *tg; ++ struct cfs_rq *cfs_rq; ++ struct sched_entity *se; ++ struct rq *rq; ++ int i; ++ ++ tg = kzalloc(sizeof(*tg), GFP_KERNEL); ++ if (!tg) ++ return ERR_PTR(-ENOMEM); ++ ++ tg->cfs_rq = kzalloc(sizeof(cfs_rq) * NR_CPUS, GFP_KERNEL); ++ if (!tg->cfs_rq) ++ goto err; ++ tg->se = kzalloc(sizeof(se) * NR_CPUS, GFP_KERNEL); ++ if (!tg->se) ++ goto err; ++ ++ for_each_possible_cpu(i) { ++ rq = cpu_rq(i); ++ ++ cfs_rq = kmalloc_node(sizeof(struct cfs_rq), GFP_KERNEL, ++ cpu_to_node(i)); ++ if (!cfs_rq) ++ goto err; ++ ++ se = kmalloc_node(sizeof(struct sched_entity), GFP_KERNEL, ++ cpu_to_node(i)); ++ if (!se) ++ goto err; ++ ++ memset(cfs_rq, 0, sizeof(struct cfs_rq)); ++ memset(se, 0, sizeof(struct sched_entity)); ++ ++ tg->cfs_rq[i] = cfs_rq; ++ init_cfs_rq(cfs_rq, rq); ++ cfs_rq->tg = tg; ++ ++ tg->se[i] = se; ++ se->cfs_rq = &rq->cfs; ++ se->my_q = cfs_rq; ++ se->load.weight = NICE_0_LOAD; ++ se->load.inv_weight = div64_64(1ULL<<32, NICE_0_LOAD); ++ se->parent = NULL; ++ } ++ ++ for_each_possible_cpu(i) { ++ rq = cpu_rq(i); ++ cfs_rq = tg->cfs_rq[i]; ++ list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list); ++ } ++ ++ tg->shares = NICE_0_LOAD; ++ spin_lock_init(&tg->lock); ++ ++ return tg; ++ ++err: ++ for_each_possible_cpu(i) { ++ if (tg->cfs_rq) ++ kfree(tg->cfs_rq[i]); ++ if (tg->se) ++ kfree(tg->se[i]); ++ } ++ kfree(tg->cfs_rq); ++ kfree(tg->se); ++ kfree(tg); ++ ++ return ERR_PTR(-ENOMEM); ++} ++ ++/* rcu callback to free various structures associated with a task group */ ++static void free_sched_group(struct rcu_head *rhp) ++{ ++ struct task_group *tg = container_of(rhp, struct task_group, rcu); ++ struct cfs_rq *cfs_rq; ++ struct sched_entity *se; ++ int i; ++ ++ /* now it should be safe to free those cfs_rqs */ ++ for_each_possible_cpu(i) { ++ cfs_rq = tg->cfs_rq[i]; ++ kfree(cfs_rq); ++ ++ se = tg->se[i]; ++ kfree(se); ++ } ++ ++ kfree(tg->cfs_rq); ++ kfree(tg->se); ++ kfree(tg); ++} ++ ++/* Destroy runqueue etc associated with a task group */ ++void sched_destroy_group(struct task_group *tg) ++{ ++ struct cfs_rq *cfs_rq = NULL; ++ int i; ++ ++ for_each_possible_cpu(i) { ++ cfs_rq = tg->cfs_rq[i]; ++ list_del_rcu(&cfs_rq->leaf_cfs_rq_list); ++ } ++ ++ BUG_ON(!cfs_rq); ++ ++ /* wait for possible concurrent references to cfs_rqs complete */ ++ call_rcu(&tg->rcu, free_sched_group); ++} ++ ++/* change task's runqueue when it moves between groups. ++ * The caller of this function should have put the task in its new group ++ * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to ++ * reflect its new group. ++ */ ++void sched_move_task(struct task_struct *tsk) ++{ ++ int on_rq, running; ++ unsigned long flags; ++ struct rq *rq; ++ ++ rq = task_rq_lock(tsk, &flags); ++ ++ if (tsk->sched_class != &fair_sched_class) { ++ set_task_cfs_rq(tsk, task_cpu(tsk)); ++ goto done; ++ } ++ ++ update_rq_clock(rq); ++ ++ running = task_current(rq, tsk); ++ on_rq = tsk->se.on_rq; ++ ++ if (on_rq) { ++ dequeue_task(rq, tsk, 0); ++ if (unlikely(running)) ++ tsk->sched_class->put_prev_task(rq, tsk); ++ } ++ ++ set_task_cfs_rq(tsk, task_cpu(tsk)); ++ ++ if (on_rq) { ++ if (unlikely(running)) ++ tsk->sched_class->set_curr_task(rq); ++ enqueue_task(rq, tsk, 0); ++ } ++ ++done: ++ task_rq_unlock(rq, &flags); ++} ++ ++static void set_se_shares(struct sched_entity *se, unsigned long shares) ++{ ++ struct cfs_rq *cfs_rq = se->cfs_rq; ++ struct rq *rq = cfs_rq->rq; ++ int on_rq; ++ ++ spin_lock_irq(&rq->lock); ++ ++ on_rq = se->on_rq; ++ if (on_rq) ++ dequeue_entity(cfs_rq, se, 0); ++ ++ se->load.weight = shares; ++ se->load.inv_weight = div64_64((1ULL<<32), shares); ++ ++ if (on_rq) ++ enqueue_entity(cfs_rq, se, 0); ++ ++ spin_unlock_irq(&rq->lock); ++} ++ ++int sched_group_set_shares(struct task_group *tg, unsigned long shares) ++{ ++ int i; ++ ++ spin_lock(&tg->lock); ++ if (tg->shares == shares) ++ goto done; ++ ++ tg->shares = shares; ++ for_each_possible_cpu(i) ++ set_se_shares(tg->se[i], shares); ++ ++done: ++ spin_unlock(&tg->lock); ++ return 0; ++} ++ ++unsigned long sched_group_shares(struct task_group *tg) ++{ ++ return tg->shares; ++} ++ ++#endif /* CONFIG_FAIR_GROUP_SCHED */ ++ ++#ifdef CONFIG_FAIR_CGROUP_SCHED ++ ++/* return corresponding task_group object of a cgroup */ ++static inline struct task_group *cgroup_tg(struct cgroup *cgrp) ++{ ++ return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id), ++ struct task_group, css); ++} ++ ++static struct cgroup_subsys_state * ++cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp) ++{ ++ struct task_group *tg; ++ ++ if (!cgrp->parent) { ++ /* This is early initialization for the top cgroup */ ++ init_task_group.css.cgroup = cgrp; ++ return &init_task_group.css; ++ } ++ ++ /* we support only 1-level deep hierarchical scheduler atm */ ++ if (cgrp->parent->parent) ++ return ERR_PTR(-EINVAL); ++ ++ tg = sched_create_group(); ++ if (IS_ERR(tg)) ++ return ERR_PTR(-ENOMEM); ++ ++ /* Bind the cgroup to task_group object we just created */ ++ tg->css.cgroup = cgrp; ++ ++ return &tg->css; ++} ++ ++static void ++cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp) ++{ ++ struct task_group *tg = cgroup_tg(cgrp); ++ ++ sched_destroy_group(tg); ++} ++ ++static int ++cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp, ++ struct task_struct *tsk) ++{ ++ /* We don't support RT-tasks being in separate groups */ ++ if (tsk->sched_class != &fair_sched_class) ++ return -EINVAL; ++ ++ return 0; ++} ++ ++static void ++cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp, ++ struct cgroup *old_cont, struct task_struct *tsk) ++{ ++ sched_move_task(tsk); ++} ++ ++static int cpu_shares_write_uint(struct cgroup *cgrp, struct cftype *cftype, ++ u64 shareval) ++{ ++ return sched_group_set_shares(cgroup_tg(cgrp), shareval); ++} ++ ++static u64 cpu_shares_read_uint(struct cgroup *cgrp, struct cftype *cft) ++{ ++ struct task_group *tg = cgroup_tg(cgrp); ++ ++ return (u64) tg->shares; ++} ++ ++static struct cftype cpu_files[] = { ++ { ++ .name = "shares", ++ .read_uint = cpu_shares_read_uint, ++ .write_uint = cpu_shares_write_uint, ++ }, ++}; ++ ++static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont) ++{ ++ return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files)); ++} ++ ++struct cgroup_subsys cpu_cgroup_subsys = { ++ .name = "cpu", ++ .create = cpu_cgroup_create, ++ .destroy = cpu_cgroup_destroy, ++ .can_attach = cpu_cgroup_can_attach, ++ .attach = cpu_cgroup_attach, ++ .populate = cpu_cgroup_populate, ++ .subsys_id = cpu_cgroup_subsys_id, ++ .early_init = 1, ++}; ++ ++#endif /* CONFIG_FAIR_CGROUP_SCHED */ ++ ++#ifdef CONFIG_CGROUP_CPUACCT ++ ++/* ++ * CPU accounting code for task groups. ++ * ++ * Based on the work by Paul Menage (menage@google.com) and Balbir Singh ++ * (balbir@in.ibm.com). ++ */ ++ ++/* track cpu usage of a group of tasks */ ++struct cpuacct { ++ struct cgroup_subsys_state css; ++ /* cpuusage holds pointer to a u64-type object on every cpu */ ++ u64 *cpuusage; ++}; ++ ++struct cgroup_subsys cpuacct_subsys; ++ ++/* return cpu accounting group corresponding to this container */ ++static inline struct cpuacct *cgroup_ca(struct cgroup *cont) ++{ ++ return container_of(cgroup_subsys_state(cont, cpuacct_subsys_id), ++ struct cpuacct, css); ++} ++ ++/* return cpu accounting group to which this task belongs */ ++static inline struct cpuacct *task_ca(struct task_struct *tsk) ++{ ++ return container_of(task_subsys_state(tsk, cpuacct_subsys_id), ++ struct cpuacct, css); ++} ++ ++/* create a new cpu accounting group */ ++static struct cgroup_subsys_state *cpuacct_create( ++ struct cgroup_subsys *ss, struct cgroup *cont) ++{ ++ struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL); ++ ++ if (!ca) ++ return ERR_PTR(-ENOMEM); ++ ++ ca->cpuusage = alloc_percpu(u64); ++ if (!ca->cpuusage) { ++ kfree(ca); ++ return ERR_PTR(-ENOMEM); ++ } ++ ++ return &ca->css; ++} ++ ++/* destroy an existing cpu accounting group */ ++static void ++cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cont) ++{ ++ struct cpuacct *ca = cgroup_ca(cont); ++ ++ free_percpu(ca->cpuusage); ++ kfree(ca); ++} ++ ++/* return total cpu usage (in nanoseconds) of a group */ ++static u64 cpuusage_read(struct cgroup *cont, struct cftype *cft) ++{ ++ struct cpuacct *ca = cgroup_ca(cont); ++ u64 totalcpuusage = 0; ++ int i; ++ ++ for_each_possible_cpu(i) { ++ u64 *cpuusage = percpu_ptr(ca->cpuusage, i); ++ ++ /* ++ * Take rq->lock to make 64-bit addition safe on 32-bit ++ * platforms. ++ */ ++ spin_lock_irq(&cpu_rq(i)->lock); ++ totalcpuusage += *cpuusage; ++ spin_unlock_irq(&cpu_rq(i)->lock); ++ } ++ ++ return totalcpuusage; ++} ++ ++static struct cftype files[] = { ++ { ++ .name = "usage", ++ .read_uint = cpuusage_read, ++ }, ++}; ++ ++static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cont) ++{ ++ return cgroup_add_files(cont, ss, files, ARRAY_SIZE(files)); ++} ++ ++/* ++ * charge this task's execution time to its accounting group. ++ * ++ * called with rq->lock held. ++ */ ++static void cpuacct_charge(struct task_struct *tsk, u64 cputime) ++{ ++ struct cpuacct *ca; ++ ++ if (!cpuacct_subsys.active) ++ return; ++ ++ ca = task_ca(tsk); ++ if (ca) { ++ u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk)); ++ ++ *cpuusage += cputime; ++ } ++} ++ ++struct cgroup_subsys cpuacct_subsys = { ++ .name = "cpuacct", ++ .create = cpuacct_create, ++ .destroy = cpuacct_destroy, ++ .populate = cpuacct_populate, ++ .subsys_id = cpuacct_subsys_id, ++}; ++#endif /* CONFIG_CGROUP_CPUACCT */ +--- linux-2.6.23.orig/kernel/sched_debug.c ++++ linux-2.6.23/kernel/sched_debug.c +@@ -26,104 +26,125 @@ + seq_printf(m, x); \ + else \ + printk(x); \ + } while (0) + ++/* ++ * Ease the printing of nsec fields: ++ */ ++static long long nsec_high(long long nsec) ++{ ++ if (nsec < 0) { ++ nsec = -nsec; ++ do_div(nsec, 1000000); ++ return -nsec; ++ } ++ do_div(nsec, 1000000); ++ ++ return nsec; ++} ++ ++static unsigned long nsec_low(long long nsec) ++{ ++ if (nsec < 0) ++ nsec = -nsec; ++ ++ return do_div(nsec, 1000000); ++} ++ ++#define SPLIT_NS(x) nsec_high(x), nsec_low(x) ++ + static void + print_task(struct seq_file *m, struct rq *rq, struct task_struct *p) + { + if (rq->curr == p) + SEQ_printf(m, "R"); + else + SEQ_printf(m, " "); + +- SEQ_printf(m, "%15s %5d %15Ld %13Ld %13Ld %9Ld %5d ", ++ SEQ_printf(m, "%15s %5d %9Ld.%06ld %9Ld %5d ", + p->comm, p->pid, +- (long long)p->se.fair_key, +- (long long)(p->se.fair_key - rq->cfs.fair_clock), +- (long long)p->se.wait_runtime, ++ SPLIT_NS(p->se.vruntime), + (long long)(p->nvcsw + p->nivcsw), + p->prio); + #ifdef CONFIG_SCHEDSTATS +- SEQ_printf(m, "%15Ld %15Ld %15Ld %15Ld %15Ld\n", +- (long long)p->se.sum_exec_runtime, +- (long long)p->se.sum_wait_runtime, +- (long long)p->se.sum_sleep_runtime, +- (long long)p->se.wait_runtime_overruns, +- (long long)p->se.wait_runtime_underruns); ++ SEQ_printf(m, "%9Ld.%06ld %9Ld.%06ld %9Ld.%06ld\n", ++ SPLIT_NS(p->se.vruntime), ++ SPLIT_NS(p->se.sum_exec_runtime), ++ SPLIT_NS(p->se.sum_sleep_runtime)); + #else +- SEQ_printf(m, "%15Ld %15Ld %15Ld %15Ld %15Ld\n", +- 0LL, 0LL, 0LL, 0LL, 0LL); ++ SEQ_printf(m, "%15Ld %15Ld %15Ld.%06ld %15Ld.%06ld %15Ld.%06ld\n", ++ 0LL, 0LL, 0LL, 0L, 0LL, 0L, 0LL, 0L); + #endif + } + + static void print_rq(struct seq_file *m, struct rq *rq, int rq_cpu) + { + struct task_struct *g, *p; ++ unsigned long flags; + + SEQ_printf(m, + "\nrunnable tasks:\n" +- " task PID tree-key delta waiting" +- " switches prio" +- " sum-exec sum-wait sum-sleep" +- " wait-overrun wait-underrun\n" +- "------------------------------------------------------------------" +- "----------------" +- "------------------------------------------------" +- "--------------------------------\n"); ++ " task PID tree-key switches prio" ++ " exec-runtime sum-exec sum-sleep\n" ++ "------------------------------------------------------" ++ "----------------------------------------------------\n"); + +- read_lock_irq(&tasklist_lock); ++ read_lock_irqsave(&tasklist_lock, flags); + + do_each_thread(g, p) { + if (!p->se.on_rq || task_cpu(p) != rq_cpu) + continue; + + print_task(m, rq, p); + } while_each_thread(g, p); + +- read_unlock_irq(&tasklist_lock); ++ read_unlock_irqrestore(&tasklist_lock, flags); + } + +-static void +-print_cfs_rq_runtime_sum(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq) ++void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq) + { +- s64 wait_runtime_rq_sum = 0; +- struct task_struct *p; +- struct rb_node *curr; +- unsigned long flags; ++ s64 MIN_vruntime = -1, min_vruntime, max_vruntime = -1, ++ spread, rq0_min_vruntime, spread0; + struct rq *rq = &per_cpu(runqueues, cpu); ++ struct sched_entity *last; ++ unsigned long flags; + +- spin_lock_irqsave(&rq->lock, flags); +- curr = first_fair(cfs_rq); +- while (curr) { +- p = rb_entry(curr, struct task_struct, se.run_node); +- wait_runtime_rq_sum += p->se.wait_runtime; +- +- curr = rb_next(curr); +- } +- spin_unlock_irqrestore(&rq->lock, flags); +- +- SEQ_printf(m, " .%-30s: %Ld\n", "wait_runtime_rq_sum", +- (long long)wait_runtime_rq_sum); +-} +- +-void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq) +-{ + SEQ_printf(m, "\ncfs_rq\n"); + +-#define P(x) \ +- SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(cfs_rq->x)) +- +- P(fair_clock); +- P(exec_clock); +- P(wait_runtime); +- P(wait_runtime_overruns); +- P(wait_runtime_underruns); +- P(sleeper_bonus); +-#undef P ++ SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "exec_clock", ++ SPLIT_NS(cfs_rq->exec_clock)); + +- print_cfs_rq_runtime_sum(m, cpu, cfs_rq); ++ spin_lock_irqsave(&rq->lock, flags); ++ if (cfs_rq->rb_leftmost) ++ MIN_vruntime = (__pick_next_entity(cfs_rq))->vruntime; ++ last = __pick_last_entity(cfs_rq); ++ if (last) ++ max_vruntime = last->vruntime; ++ min_vruntime = rq->cfs.min_vruntime; ++ rq0_min_vruntime = per_cpu(runqueues, 0).cfs.min_vruntime; ++ spin_unlock_irqrestore(&rq->lock, flags); ++ SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "MIN_vruntime", ++ SPLIT_NS(MIN_vruntime)); ++ SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "min_vruntime", ++ SPLIT_NS(min_vruntime)); ++ SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "max_vruntime", ++ SPLIT_NS(max_vruntime)); ++ spread = max_vruntime - MIN_vruntime; ++ SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "spread", ++ SPLIT_NS(spread)); ++ spread0 = min_vruntime - rq0_min_vruntime; ++ SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "spread0", ++ SPLIT_NS(spread0)); ++ SEQ_printf(m, " .%-30s: %ld\n", "nr_running", cfs_rq->nr_running); ++ SEQ_printf(m, " .%-30s: %ld\n", "load", cfs_rq->load.weight); ++#ifdef CONFIG_SCHEDSTATS ++ SEQ_printf(m, " .%-30s: %d\n", "bkl_count", ++ rq->bkl_count); ++#endif ++ SEQ_printf(m, " .%-30s: %ld\n", "nr_spread_over", ++ cfs_rq->nr_spread_over); + } + + static void print_cpu(struct seq_file *m, int cpu) + { + struct rq *rq = &per_cpu(runqueues, cpu); +@@ -139,35 +160,36 @@ static void print_cpu(struct seq_file *m + SEQ_printf(m, "\ncpu#%d\n", cpu); + #endif + + #define P(x) \ + SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(rq->x)) ++#define PN(x) \ ++ SEQ_printf(m, " .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rq->x)) + + P(nr_running); + SEQ_printf(m, " .%-30s: %lu\n", "load", +- rq->ls.load.weight); +- P(ls.delta_fair); +- P(ls.delta_exec); ++ rq->load.weight); + P(nr_switches); + P(nr_load_updates); + P(nr_uninterruptible); + SEQ_printf(m, " .%-30s: %lu\n", "jiffies", jiffies); +- P(next_balance); ++ PN(next_balance); + P(curr->pid); +- P(clock); +- P(idle_clock); +- P(prev_clock_raw); ++ PN(clock); ++ PN(idle_clock); ++ PN(prev_clock_raw); + P(clock_warps); + P(clock_overflows); + P(clock_deep_idle_events); +- P(clock_max_delta); ++ PN(clock_max_delta); + P(cpu_load[0]); + P(cpu_load[1]); + P(cpu_load[2]); + P(cpu_load[3]); + P(cpu_load[4]); + #undef P ++#undef PN + + print_cfs_stats(m, cpu); + + print_rq(m, rq, cpu); + } +@@ -175,16 +197,29 @@ static void print_cpu(struct seq_file *m + static int sched_debug_show(struct seq_file *m, void *v) + { + u64 now = ktime_to_ns(ktime_get()); + int cpu; + +- SEQ_printf(m, "Sched Debug Version: v0.05-v20, %s %.*s\n", ++ SEQ_printf(m, "Sched Debug Version: v0.07, %s %.*s\n", + init_utsname()->release, + (int)strcspn(init_utsname()->version, " "), + init_utsname()->version); + +- SEQ_printf(m, "now at %Lu nsecs\n", (unsigned long long)now); ++ SEQ_printf(m, "now at %Lu.%06ld msecs\n", SPLIT_NS(now)); ++ ++#define P(x) \ ++ SEQ_printf(m, " .%-40s: %Ld\n", #x, (long long)(x)) ++#define PN(x) \ ++ SEQ_printf(m, " .%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x)) ++ PN(sysctl_sched_latency); ++ PN(sysctl_sched_min_granularity); ++ PN(sysctl_sched_wakeup_granularity); ++ PN(sysctl_sched_batch_wakeup_granularity); ++ PN(sysctl_sched_child_runs_first); ++ P(sysctl_sched_features); ++#undef PN ++#undef P + + for_each_online_cpu(cpu) + print_cpu(m, cpu); + + SEQ_printf(m, "\n"); +@@ -200,11 +235,11 @@ static void sysrq_sched_debug_show(void) + static int sched_debug_open(struct inode *inode, struct file *filp) + { + return single_open(filp, sched_debug_show, NULL); + } + +-static struct file_operations sched_debug_fops = { ++static const struct file_operations sched_debug_fops = { + .open = sched_debug_open, + .read = seq_read, + .llseek = seq_lseek, + .release = single_release, + }; +@@ -224,10 +259,11 @@ static int __init init_sched_debug_procf + + __initcall(init_sched_debug_procfs); + + void proc_sched_show_task(struct task_struct *p, struct seq_file *m) + { ++ unsigned long nr_switches; + unsigned long flags; + int num_threads = 1; + + rcu_read_lock(); + if (lock_task_sighand(p, &flags)) { +@@ -235,53 +271,126 @@ void proc_sched_show_task(struct task_st + unlock_task_sighand(p, &flags); + } + rcu_read_unlock(); + + SEQ_printf(m, "%s (%d, #threads: %d)\n", p->comm, p->pid, num_threads); +- SEQ_printf(m, "----------------------------------------------\n"); ++ SEQ_printf(m, ++ "---------------------------------------------------------\n"); ++#define __P(F) \ ++ SEQ_printf(m, "%-35s:%21Ld\n", #F, (long long)F) + #define P(F) \ +- SEQ_printf(m, "%-25s:%20Ld\n", #F, (long long)p->F) ++ SEQ_printf(m, "%-35s:%21Ld\n", #F, (long long)p->F) ++#define __PN(F) \ ++ SEQ_printf(m, "%-35s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)F)) ++#define PN(F) \ ++ SEQ_printf(m, "%-35s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)p->F)) ++ ++ PN(se.exec_start); ++ PN(se.vruntime); ++ PN(se.sum_exec_runtime); + +- P(se.wait_runtime); +- P(se.wait_start_fair); +- P(se.exec_start); +- P(se.sleep_start_fair); +- P(se.sum_exec_runtime); ++ nr_switches = p->nvcsw + p->nivcsw; + + #ifdef CONFIG_SCHEDSTATS +- P(se.wait_start); +- P(se.sleep_start); +- P(se.block_start); +- P(se.sleep_max); +- P(se.block_max); +- P(se.exec_max); +- P(se.wait_max); +- P(se.wait_runtime_overruns); +- P(se.wait_runtime_underruns); +- P(se.sum_wait_runtime); ++ PN(se.wait_start); ++ PN(se.sleep_start); ++ PN(se.block_start); ++ PN(se.sleep_max); ++ PN(se.block_max); ++ PN(se.exec_max); ++ PN(se.slice_max); ++ PN(se.wait_max); ++ P(sched_info.bkl_count); ++ P(se.nr_migrations); ++ P(se.nr_migrations_cold); ++ P(se.nr_failed_migrations_affine); ++ P(se.nr_failed_migrations_running); ++ P(se.nr_failed_migrations_hot); ++ P(se.nr_forced_migrations); ++ P(se.nr_forced2_migrations); ++ P(se.nr_wakeups); ++ P(se.nr_wakeups_sync); ++ P(se.nr_wakeups_migrate); ++ P(se.nr_wakeups_local); ++ P(se.nr_wakeups_remote); ++ P(se.nr_wakeups_affine); ++ P(se.nr_wakeups_affine_attempts); ++ P(se.nr_wakeups_passive); ++ P(se.nr_wakeups_idle); ++ ++ { ++ u64 avg_atom, avg_per_cpu; ++ ++ avg_atom = p->se.sum_exec_runtime; ++ if (nr_switches) ++ do_div(avg_atom, nr_switches); ++ else ++ avg_atom = -1LL; ++ ++ avg_per_cpu = p->se.sum_exec_runtime; ++ if (p->se.nr_migrations) { ++ avg_per_cpu = div64_64(avg_per_cpu, ++ p->se.nr_migrations); ++ } else { ++ avg_per_cpu = -1LL; ++ } ++ ++ __PN(avg_atom); ++ __PN(avg_per_cpu); ++ } + #endif +- SEQ_printf(m, "%-25s:%20Ld\n", +- "nr_switches", (long long)(p->nvcsw + p->nivcsw)); ++ __P(nr_switches); ++ SEQ_printf(m, "%-35s:%21Ld\n", ++ "nr_voluntary_switches", (long long)p->nvcsw); ++ SEQ_printf(m, "%-35s:%21Ld\n", ++ "nr_involuntary_switches", (long long)p->nivcsw); ++ + P(se.load.weight); + P(policy); + P(prio); ++#undef PN ++#undef __PN + #undef P ++#undef __P + + { + u64 t0, t1; + + t0 = sched_clock(); + t1 = sched_clock(); +- SEQ_printf(m, "%-25s:%20Ld\n", ++ SEQ_printf(m, "%-35s:%21Ld\n", + "clock-delta", (long long)(t1-t0)); + } + } + + void proc_sched_set_task(struct task_struct *p) + { + #ifdef CONFIG_SCHEDSTATS +- p->se.sleep_max = p->se.block_max = p->se.exec_max = p->se.wait_max = 0; +- p->se.wait_runtime_overruns = p->se.wait_runtime_underruns = 0; ++ p->se.wait_max = 0; ++ p->se.sleep_max = 0; ++ p->se.sum_sleep_runtime = 0; ++ p->se.block_max = 0; ++ p->se.exec_max = 0; ++ p->se.slice_max = 0; ++ p->se.nr_migrations = 0; ++ p->se.nr_migrations_cold = 0; ++ p->se.nr_failed_migrations_affine = 0; ++ p->se.nr_failed_migrations_running = 0; ++ p->se.nr_failed_migrations_hot = 0; ++ p->se.nr_forced_migrations = 0; ++ p->se.nr_forced2_migrations = 0; ++ p->se.nr_wakeups = 0; ++ p->se.nr_wakeups_sync = 0; ++ p->se.nr_wakeups_migrate = 0; ++ p->se.nr_wakeups_local = 0; ++ p->se.nr_wakeups_remote = 0; ++ p->se.nr_wakeups_affine = 0; ++ p->se.nr_wakeups_affine_attempts = 0; ++ p->se.nr_wakeups_passive = 0; ++ p->se.nr_wakeups_idle = 0; ++ p->sched_info.bkl_count = 0; + #endif +- p->se.sum_exec_runtime = 0; +- p->se.prev_sum_exec_runtime = 0; ++ p->se.sum_exec_runtime = 0; ++ p->se.prev_sum_exec_runtime = 0; ++ p->nvcsw = 0; ++ p->nivcsw = 0; + } +--- linux-2.6.23.orig/kernel/sched_fair.c ++++ linux-2.6.23/kernel/sched_fair.c +@@ -20,29 +20,38 @@ + * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> + */ + + /* + * Targeted preemption latency for CPU-bound tasks: +- * (default: 20ms, units: nanoseconds) ++ * (default: 20ms * (1 + ilog(ncpus)), units: nanoseconds) + * + * NOTE: this latency value is not the same as the concept of +- * 'timeslice length' - timeslices in CFS are of variable length. +- * (to see the precise effective timeslice length of your workload, +- * run vmstat and monitor the context-switches field) ++ * 'timeslice length' - timeslices in CFS are of variable length ++ * and have no persistent notion like in traditional, time-slice ++ * based scheduling concepts. + * +- * On SMP systems the value of this is multiplied by the log2 of the +- * number of CPUs. (i.e. factor 2x on 2-way systems, 3x on 4-way +- * systems, 4x on 8-way systems, 5x on 16-way systems, etc.) +- * Targeted preemption latency for CPU-bound tasks: ++ * (to see the precise effective timeslice length of your workload, ++ * run vmstat and monitor the context-switches (cs) field) + */ +-unsigned int sysctl_sched_latency __read_mostly = 20000000ULL; ++unsigned int sysctl_sched_latency = 20000000ULL; + + /* + * Minimal preemption granularity for CPU-bound tasks: +- * (default: 2 msec, units: nanoseconds) ++ * (default: 4 msec * (1 + ilog(ncpus)), units: nanoseconds) ++ */ ++unsigned int sysctl_sched_min_granularity = 4000000ULL; ++ ++/* ++ * is kept at sysctl_sched_latency / sysctl_sched_min_granularity + */ +-unsigned int sysctl_sched_min_granularity __read_mostly = 2000000ULL; ++static unsigned int sched_nr_latency = 5; ++ ++/* ++ * After fork, child runs first. (default) If set to 0 then ++ * parent will (try to) run first. ++ */ ++const_debug unsigned int sysctl_sched_child_runs_first = 1; + + /* + * sys_sched_yield() compat mode + * + * This option switches the agressive yield implementation of the +@@ -50,56 +59,29 @@ unsigned int sysctl_sched_min_granularit + */ + unsigned int __read_mostly sysctl_sched_compat_yield; + + /* + * SCHED_BATCH wake-up granularity. +- * (default: 25 msec, units: nanoseconds) ++ * (default: 10 msec * (1 + ilog(ncpus)), units: nanoseconds) + * + * This option delays the preemption effects of decoupled workloads + * and reduces their over-scheduling. Synchronous workloads will still + * have immediate wakeup/sleep latencies. + */ +-unsigned int sysctl_sched_batch_wakeup_granularity __read_mostly = 25000000UL; ++unsigned int sysctl_sched_batch_wakeup_granularity = 10000000UL; + + /* + * SCHED_OTHER wake-up granularity. +- * (default: 1 msec, units: nanoseconds) ++ * (default: 10 msec * (1 + ilog(ncpus)), units: nanoseconds) + * + * This option delays the preemption effects of decoupled workloads + * and reduces their over-scheduling. Synchronous workloads will still + * have immediate wakeup/sleep latencies. + */ +-unsigned int sysctl_sched_wakeup_granularity __read_mostly = 1000000UL; +- +-unsigned int sysctl_sched_stat_granularity __read_mostly; +- +-/* +- * Initialized in sched_init_granularity() [to 5 times the base granularity]: +- */ +-unsigned int sysctl_sched_runtime_limit __read_mostly; +- +-/* +- * Debugging: various feature bits +- */ +-enum { +- SCHED_FEAT_FAIR_SLEEPERS = 1, +- SCHED_FEAT_SLEEPER_AVG = 2, +- SCHED_FEAT_SLEEPER_LOAD_AVG = 4, +- SCHED_FEAT_PRECISE_CPU_LOAD = 8, +- SCHED_FEAT_START_DEBIT = 16, +- SCHED_FEAT_SKIP_INITIAL = 32, +-}; +- +-unsigned int sysctl_sched_features __read_mostly = +- SCHED_FEAT_FAIR_SLEEPERS *1 | +- SCHED_FEAT_SLEEPER_AVG *0 | +- SCHED_FEAT_SLEEPER_LOAD_AVG *1 | +- SCHED_FEAT_PRECISE_CPU_LOAD *0 | +- SCHED_FEAT_START_DEBIT *1 | +- SCHED_FEAT_SKIP_INITIAL *0; ++unsigned int sysctl_sched_wakeup_granularity = 10000000UL; + +-extern struct sched_class fair_sched_class; ++const_debug unsigned int sysctl_sched_migration_cost = 500000UL; + + /************************************************************** + * CFS operations on generic schedulable entities: + */ + +@@ -109,47 +91,22 @@ extern struct sched_class fair_sched_cla + static inline struct rq *rq_of(struct cfs_rq *cfs_rq) + { + return cfs_rq->rq; + } + +-/* currently running entity (if any) on this cfs_rq */ +-static inline struct sched_entity *cfs_rq_curr(struct cfs_rq *cfs_rq) +-{ +- return cfs_rq->curr; +-} +- + /* An entity is a task if it doesn't "own" a runqueue */ + #define entity_is_task(se) (!se->my_q) + +-static inline void +-set_cfs_rq_curr(struct cfs_rq *cfs_rq, struct sched_entity *se) +-{ +- cfs_rq->curr = se; +-} +- + #else /* CONFIG_FAIR_GROUP_SCHED */ + + static inline struct rq *rq_of(struct cfs_rq *cfs_rq) + { + return container_of(cfs_rq, struct rq, cfs); + } + +-static inline struct sched_entity *cfs_rq_curr(struct cfs_rq *cfs_rq) +-{ +- struct rq *rq = rq_of(cfs_rq); +- +- if (unlikely(rq->curr->sched_class != &fair_sched_class)) +- return NULL; +- +- return &rq->curr->se; +-} +- + #define entity_is_task(se) 1 + +-static inline void +-set_cfs_rq_curr(struct cfs_rq *cfs_rq, struct sched_entity *se) { } +- + #endif /* CONFIG_FAIR_GROUP_SCHED */ + + static inline struct task_struct *task_of(struct sched_entity *se) + { + return container_of(se, struct task_struct, se); +@@ -158,20 +115,42 @@ static inline struct task_struct *task_o + + /************************************************************** + * Scheduling class tree data structure manipulation methods: + */ + ++static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime) ++{ ++ s64 delta = (s64)(vruntime - min_vruntime); ++ if (delta > 0) ++ min_vruntime = vruntime; ++ ++ return min_vruntime; ++} ++ ++static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime) ++{ ++ s64 delta = (s64)(vruntime - min_vruntime); ++ if (delta < 0) ++ min_vruntime = vruntime; ++ ++ return min_vruntime; ++} ++ ++static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se) ++{ ++ return se->vruntime - cfs_rq->min_vruntime; ++} ++ + /* + * Enqueue an entity into the rb-tree: + */ +-static inline void +-__enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) ++static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) + { + struct rb_node **link = &cfs_rq->tasks_timeline.rb_node; + struct rb_node *parent = NULL; + struct sched_entity *entry; +- s64 key = se->fair_key; ++ s64 key = entity_key(cfs_rq, se); + int leftmost = 1; + + /* + * Find the right place in the rbtree: + */ +@@ -180,11 +159,11 @@ __enqueue_entity(struct cfs_rq *cfs_rq, + entry = rb_entry(parent, struct sched_entity, run_node); + /* + * We dont care about collisions. Nodes with + * the same key stay together. + */ +- if (key - entry->fair_key < 0) { ++ if (key < entity_key(cfs_rq, entry)) { + link = &parent->rb_left; + } else { + link = &parent->rb_right; + leftmost = 0; + } +@@ -197,28 +176,18 @@ __enqueue_entity(struct cfs_rq *cfs_rq, + if (leftmost) + cfs_rq->rb_leftmost = &se->run_node; + + rb_link_node(&se->run_node, parent, link); + rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline); +- update_load_add(&cfs_rq->load, se->load.weight); +- cfs_rq->nr_running++; +- se->on_rq = 1; +- +- schedstat_add(cfs_rq, wait_runtime, se->wait_runtime); + } + +-static inline void +-__dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) ++static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) + { + if (cfs_rq->rb_leftmost == &se->run_node) + cfs_rq->rb_leftmost = rb_next(&se->run_node); +- rb_erase(&se->run_node, &cfs_rq->tasks_timeline); +- update_load_sub(&cfs_rq->load, se->load.weight); +- cfs_rq->nr_running--; +- se->on_rq = 0; + +- schedstat_add(cfs_rq, wait_runtime, -se->wait_runtime); ++ rb_erase(&se->run_node, &cfs_rq->tasks_timeline); + } + + static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq) + { + return cfs_rq->rb_leftmost; +@@ -227,308 +196,206 @@ static inline struct rb_node *first_fair + static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq) + { + return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node); + } + ++static inline struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq) ++{ ++ struct rb_node **link = &cfs_rq->tasks_timeline.rb_node; ++ struct sched_entity *se = NULL; ++ struct rb_node *parent; ++ ++ while (*link) { ++ parent = *link; ++ se = rb_entry(parent, struct sched_entity, run_node); ++ link = &parent->rb_right; ++ } ++ ++ return se; ++} ++ + /************************************************************** + * Scheduling class statistics methods: + */ + ++#ifdef CONFIG_SCHED_DEBUG ++int sched_nr_latency_handler(struct ctl_table *table, int write, ++ struct file *filp, void __user *buffer, size_t *lenp, ++ loff_t *ppos) ++{ ++ int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos); ++ ++ if (ret || !write) ++ return ret; ++ ++ sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency, ++ sysctl_sched_min_granularity); ++ ++ return 0; ++} ++#endif ++ + /* +- * Calculate the preemption granularity needed to schedule every +- * runnable task once per sysctl_sched_latency amount of time. +- * (down to a sensible low limit on granularity) +- * +- * For example, if there are 2 tasks running and latency is 10 msecs, +- * we switch tasks every 5 msecs. If we have 3 tasks running, we have +- * to switch tasks every 3.33 msecs to get a 10 msecs observed latency +- * for each task. We do finer and finer scheduling up to until we +- * reach the minimum granularity value. +- * +- * To achieve this we use the following dynamic-granularity rule: +- * +- * gran = lat/nr - lat/nr/nr ++ * The idea is to set a period in which each task runs once. + * +- * This comes out of the following equations: ++ * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch ++ * this period because otherwise the slices get too small. + * +- * kA1 + gran = kB1 +- * kB2 + gran = kA2 +- * kA2 = kA1 +- * kB2 = kB1 - d + d/nr +- * lat = d * nr +- * +- * Where 'k' is key, 'A' is task A (waiting), 'B' is task B (running), +- * '1' is start of time, '2' is end of time, 'd' is delay between +- * 1 and 2 (during which task B was running), 'nr' is number of tasks +- * running, 'lat' is the the period of each task. ('lat' is the +- * sched_latency that we aim for.) ++ * p = (nr <= nl) ? l : l*nr/nl + */ +-static long +-sched_granularity(struct cfs_rq *cfs_rq) ++static u64 __sched_period(unsigned long nr_running) + { +- unsigned int gran = sysctl_sched_latency; +- unsigned int nr = cfs_rq->nr_running; ++ u64 period = sysctl_sched_latency; ++ unsigned long nr_latency = sched_nr_latency; + +- if (nr > 1) { +- gran = gran/nr - gran/nr/nr; +- gran = max(gran, sysctl_sched_min_granularity); ++ if (unlikely(nr_running > nr_latency)) { ++ period *= nr_running; ++ do_div(period, nr_latency); + } + +- return gran; ++ return period; + } + + /* +- * We rescale the rescheduling granularity of tasks according to their +- * nice level, but only linearly, not exponentially: ++ * We calculate the wall-time slice from the period by taking a part ++ * proportional to the weight. ++ * ++ * s = p*w/rw + */ +-static long +-niced_granularity(struct sched_entity *curr, unsigned long granularity) ++static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se) + { +- u64 tmp; ++ u64 slice = __sched_period(cfs_rq->nr_running); + +- if (likely(curr->load.weight == NICE_0_LOAD)) +- return granularity; +- /* +- * Positive nice levels get the same granularity as nice-0: +- */ +- if (likely(curr->load.weight < NICE_0_LOAD)) { +- tmp = curr->load.weight * (u64)granularity; +- return (long) (tmp >> NICE_0_SHIFT); +- } +- /* +- * Negative nice level tasks get linearly finer +- * granularity: +- */ +- tmp = curr->load.inv_weight * (u64)granularity; ++ slice *= se->load.weight; ++ do_div(slice, cfs_rq->load.weight); + +- /* +- * It will always fit into 'long': +- */ +- return (long) (tmp >> (WMULT_SHIFT-NICE_0_SHIFT)); ++ return slice; + } + +-static inline void +-limit_wait_runtime(struct cfs_rq *cfs_rq, struct sched_entity *se) ++/* ++ * We calculate the vruntime slice. ++ * ++ * vs = s/w = p/rw ++ */ ++static u64 __sched_vslice(unsigned long rq_weight, unsigned long nr_running) + { +- long limit = sysctl_sched_runtime_limit; ++ u64 vslice = __sched_period(nr_running); + +- /* +- * Niced tasks have the same history dynamic range as +- * non-niced tasks: +- */ +- if (unlikely(se->wait_runtime > limit)) { +- se->wait_runtime = limit; +- schedstat_inc(se, wait_runtime_overruns); +- schedstat_inc(cfs_rq, wait_runtime_overruns); +- } +- if (unlikely(se->wait_runtime < -limit)) { +- se->wait_runtime = -limit; +- schedstat_inc(se, wait_runtime_underruns); +- schedstat_inc(cfs_rq, wait_runtime_underruns); +- } ++ vslice *= NICE_0_LOAD; ++ do_div(vslice, rq_weight); ++ ++ return vslice; + } + +-static inline void +-__add_wait_runtime(struct cfs_rq *cfs_rq, struct sched_entity *se, long delta) ++static u64 sched_vslice(struct cfs_rq *cfs_rq) + { +- se->wait_runtime += delta; +- schedstat_add(se, sum_wait_runtime, delta); +- limit_wait_runtime(cfs_rq, se); ++ return __sched_vslice(cfs_rq->load.weight, cfs_rq->nr_running); + } + +-static void +-add_wait_runtime(struct cfs_rq *cfs_rq, struct sched_entity *se, long delta) ++static u64 sched_vslice_add(struct cfs_rq *cfs_rq, struct sched_entity *se) + { +- schedstat_add(cfs_rq, wait_runtime, -se->wait_runtime); +- __add_wait_runtime(cfs_rq, se, delta); +- schedstat_add(cfs_rq, wait_runtime, se->wait_runtime); ++ return __sched_vslice(cfs_rq->load.weight + se->load.weight, ++ cfs_rq->nr_running + 1); + } + + /* + * Update the current task's runtime statistics. Skip current tasks that + * are not in our scheduling class. + */ + static inline void +-__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr) ++__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr, ++ unsigned long delta_exec) + { +- unsigned long delta, delta_exec, delta_fair, delta_mine; +- struct load_weight *lw = &cfs_rq->load; +- unsigned long load = lw->weight; ++ unsigned long delta_exec_weighted; ++ u64 vruntime; + +- delta_exec = curr->delta_exec; + schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max)); + + curr->sum_exec_runtime += delta_exec; +- cfs_rq->exec_clock += delta_exec; +- +- if (unlikely(!load)) +- return; +- +- delta_fair = calc_delta_fair(delta_exec, lw); +- delta_mine = calc_delta_mine(delta_exec, curr->load.weight, lw); +- +- if (cfs_rq->sleeper_bonus > sysctl_sched_min_granularity) { +- delta = min((u64)delta_mine, cfs_rq->sleeper_bonus); +- delta = min(delta, (unsigned long)( +- (long)sysctl_sched_runtime_limit - curr->wait_runtime)); +- cfs_rq->sleeper_bonus -= delta; +- delta_mine -= delta; ++ schedstat_add(cfs_rq, exec_clock, delta_exec); ++ delta_exec_weighted = delta_exec; ++ if (unlikely(curr->load.weight != NICE_0_LOAD)) { ++ delta_exec_weighted = calc_delta_fair(delta_exec_weighted, ++ &curr->load); + } ++ curr->vruntime += delta_exec_weighted; + +- cfs_rq->fair_clock += delta_fair; + /* +- * We executed delta_exec amount of time on the CPU, +- * but we were only entitled to delta_mine amount of +- * time during that period (if nr_running == 1 then +- * the two values are equal) +- * [Note: delta_mine - delta_exec is negative]: ++ * maintain cfs_rq->min_vruntime to be a monotonic increasing ++ * value tracking the leftmost vruntime in the tree. + */ +- add_wait_runtime(cfs_rq, curr, delta_mine - delta_exec); ++ if (first_fair(cfs_rq)) { ++ vruntime = min_vruntime(curr->vruntime, ++ __pick_next_entity(cfs_rq)->vruntime); ++ } else ++ vruntime = curr->vruntime; ++ ++ cfs_rq->min_vruntime = ++ max_vruntime(cfs_rq->min_vruntime, vruntime); + } + + static void update_curr(struct cfs_rq *cfs_rq) + { +- struct sched_entity *curr = cfs_rq_curr(cfs_rq); ++ struct sched_entity *curr = cfs_rq->curr; ++ u64 now = rq_of(cfs_rq)->clock; + unsigned long delta_exec; + + if (unlikely(!curr)) + return; + + /* + * Get the amount of time the current task was running + * since the last time we changed load (this cannot + * overflow on 32 bits): + */ +- delta_exec = (unsigned long)(rq_of(cfs_rq)->clock - curr->exec_start); ++ delta_exec = (unsigned long)(now - curr->exec_start); ++ ++ __update_curr(cfs_rq, curr, delta_exec); ++ curr->exec_start = now; + +- curr->delta_exec += delta_exec; ++ if (entity_is_task(curr)) { ++ struct task_struct *curtask = task_of(curr); + +- if (unlikely(curr->delta_exec > sysctl_sched_stat_granularity)) { +- __update_curr(cfs_rq, curr); +- curr->delta_exec = 0; ++ cpuacct_charge(curtask, delta_exec); + } +- curr->exec_start = rq_of(cfs_rq)->clock; + } + + static inline void + update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se) + { +- se->wait_start_fair = cfs_rq->fair_clock; + schedstat_set(se->wait_start, rq_of(cfs_rq)->clock); + } + + /* +- * We calculate fair deltas here, so protect against the random effects +- * of a multiplication overflow by capping it to the runtime limit: +- */ +-#if BITS_PER_LONG == 32 +-static inline unsigned long +-calc_weighted(unsigned long delta, unsigned long weight, int shift) +-{ +- u64 tmp = (u64)delta * weight >> shift; +- +- if (unlikely(tmp > sysctl_sched_runtime_limit*2)) +- return sysctl_sched_runtime_limit*2; +- return tmp; +-} +-#else +-static inline unsigned long +-calc_weighted(unsigned long delta, unsigned long weight, int shift) +-{ +- return delta * weight >> shift; +-} +-#endif +- +-/* + * Task is being enqueued - update stats: + */ + static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) + { +- s64 key; +- + /* + * Are we enqueueing a waiting task? (for current tasks + * a dequeue/enqueue event is a NOP) + */ +- if (se != cfs_rq_curr(cfs_rq)) ++ if (se != cfs_rq->curr) + update_stats_wait_start(cfs_rq, se); +- /* +- * Update the key: +- */ +- key = cfs_rq->fair_clock; +- +- /* +- * Optimize the common nice 0 case: +- */ +- if (likely(se->load.weight == NICE_0_LOAD)) { +- key -= se->wait_runtime; +- } else { +- u64 tmp; +- +- if (se->wait_runtime < 0) { +- tmp = -se->wait_runtime; +- key += (tmp * se->load.inv_weight) >> +- (WMULT_SHIFT - NICE_0_SHIFT); +- } else { +- tmp = se->wait_runtime; +- key -= (tmp * se->load.inv_weight) >> +- (WMULT_SHIFT - NICE_0_SHIFT); +- } +- } +- +- se->fair_key = key; +-} +- +-/* +- * Note: must be called with a freshly updated rq->fair_clock. +- */ +-static inline void +-__update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se) +-{ +- unsigned long delta_fair = se->delta_fair_run; +- +- schedstat_set(se->wait_max, max(se->wait_max, +- rq_of(cfs_rq)->clock - se->wait_start)); +- +- if (unlikely(se->load.weight != NICE_0_LOAD)) +- delta_fair = calc_weighted(delta_fair, se->load.weight, +- NICE_0_SHIFT); +- +- add_wait_runtime(cfs_rq, se, delta_fair); + } + + static void + update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se) + { +- unsigned long delta_fair; +- +- if (unlikely(!se->wait_start_fair)) +- return; +- +- delta_fair = (unsigned long)min((u64)(2*sysctl_sched_runtime_limit), +- (u64)(cfs_rq->fair_clock - se->wait_start_fair)); +- +- se->delta_fair_run += delta_fair; +- if (unlikely(abs(se->delta_fair_run) >= +- sysctl_sched_stat_granularity)) { +- __update_stats_wait_end(cfs_rq, se); +- se->delta_fair_run = 0; +- } +- +- se->wait_start_fair = 0; ++ schedstat_set(se->wait_max, max(se->wait_max, ++ rq_of(cfs_rq)->clock - se->wait_start)); + schedstat_set(se->wait_start, 0); + } + + static inline void + update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) + { +- update_curr(cfs_rq); + /* + * Mark the end of the wait period if dequeueing a + * waiting task: + */ +- if (se != cfs_rq_curr(cfs_rq)) ++ if (se != cfs_rq->curr) + update_stats_wait_end(cfs_rq, se); + } + + /* + * We are picking a new current task - update its stats: +@@ -540,83 +407,32 @@ update_stats_curr_start(struct cfs_rq *c + * We are starting a new run period: + */ + se->exec_start = rq_of(cfs_rq)->clock; + } + +-/* +- * We are descheduling a task - update its stats: +- */ +-static inline void +-update_stats_curr_end(struct cfs_rq *cfs_rq, struct sched_entity *se) +-{ +- se->exec_start = 0; +-} +- + /************************************************** + * Scheduling class queueing methods: + */ + +-static void __enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se) ++static void ++account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) + { +- unsigned long load = cfs_rq->load.weight, delta_fair; +- long prev_runtime; +- +- /* +- * Do not boost sleepers if there's too much bonus 'in flight' +- * already: +- */ +- if (unlikely(cfs_rq->sleeper_bonus > sysctl_sched_runtime_limit)) +- return; +- +- if (sysctl_sched_features & SCHED_FEAT_SLEEPER_LOAD_AVG) +- load = rq_of(cfs_rq)->cpu_load[2]; +- +- delta_fair = se->delta_fair_sleep; +- +- /* +- * Fix up delta_fair with the effect of us running +- * during the whole sleep period: +- */ +- if (sysctl_sched_features & SCHED_FEAT_SLEEPER_AVG) +- delta_fair = div64_likely32((u64)delta_fair * load, +- load + se->load.weight); +- +- if (unlikely(se->load.weight != NICE_0_LOAD)) +- delta_fair = calc_weighted(delta_fair, se->load.weight, +- NICE_0_SHIFT); +- +- prev_runtime = se->wait_runtime; +- __add_wait_runtime(cfs_rq, se, delta_fair); +- delta_fair = se->wait_runtime - prev_runtime; ++ update_load_add(&cfs_rq->load, se->load.weight); ++ cfs_rq->nr_running++; ++ se->on_rq = 1; ++} + +- /* +- * Track the amount of bonus we've given to sleepers: +- */ +- cfs_rq->sleeper_bonus += delta_fair; ++static void ++account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) ++{ ++ update_load_sub(&cfs_rq->load, se->load.weight); ++ cfs_rq->nr_running--; ++ se->on_rq = 0; + } + + static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se) + { +- struct task_struct *tsk = task_of(se); +- unsigned long delta_fair; +- +- if ((entity_is_task(se) && tsk->policy == SCHED_BATCH) || +- !(sysctl_sched_features & SCHED_FEAT_FAIR_SLEEPERS)) +- return; +- +- delta_fair = (unsigned long)min((u64)(2*sysctl_sched_runtime_limit), +- (u64)(cfs_rq->fair_clock - se->sleep_start_fair)); +- +- se->delta_fair_sleep += delta_fair; +- if (unlikely(abs(se->delta_fair_sleep) >= +- sysctl_sched_stat_granularity)) { +- __enqueue_sleeper(cfs_rq, se); +- se->delta_fair_sleep = 0; +- } +- +- se->sleep_start_fair = 0; +- + #ifdef CONFIG_SCHEDSTATS + if (se->sleep_start) { + u64 delta = rq_of(cfs_rq)->clock - se->sleep_start; + + if ((s64)delta < 0) +@@ -644,38 +460,99 @@ static void enqueue_sleeper(struct cfs_r + * Blocking time is in units of nanosecs, so shift by 20 to + * get a milliseconds-range estimation of the amount of + * time that the task spent sleeping: + */ + if (unlikely(prof_on == SLEEP_PROFILING)) { ++ struct task_struct *tsk = task_of(se); ++ + profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk), + delta >> 20); + } + } + #endif + } + ++static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se) ++{ ++#ifdef CONFIG_SCHED_DEBUG ++ s64 d = se->vruntime - cfs_rq->min_vruntime; ++ ++ if (d < 0) ++ d = -d; ++ ++ if (d > 3*sysctl_sched_latency) ++ schedstat_inc(cfs_rq, nr_spread_over); ++#endif ++} ++ ++static void ++place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial) ++{ ++ u64 vruntime; ++ ++ vruntime = cfs_rq->min_vruntime; ++ ++ if (sched_feat(TREE_AVG)) { ++ struct sched_entity *last = __pick_last_entity(cfs_rq); ++ if (last) { ++ vruntime += last->vruntime; ++ vruntime >>= 1; ++ } ++ } else if (sched_feat(APPROX_AVG) && cfs_rq->nr_running) ++ vruntime += sched_vslice(cfs_rq)/2; ++ ++ /* ++ * The 'current' period is already promised to the current tasks, ++ * however the extra weight of the new task will slow them down a ++ * little, place the new task so that it fits in the slot that ++ * stays open at the end. ++ */ ++ if (initial && sched_feat(START_DEBIT)) ++ vruntime += sched_vslice_add(cfs_rq, se); ++ ++ if (!initial) { ++ /* sleeps upto a single latency don't count. */ ++ if (sched_feat(NEW_FAIR_SLEEPERS) && entity_is_task(se)) ++ vruntime -= sysctl_sched_latency; ++ ++ /* ensure we never gain time by being placed backwards. */ ++ vruntime = max_vruntime(se->vruntime, vruntime); ++ } ++ ++ se->vruntime = vruntime; ++} ++ + static void + enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup) + { + /* +- * Update the fair clock. ++ * Update run-time statistics of the 'current'. + */ + update_curr(cfs_rq); + +- if (wakeup) ++ if (wakeup) { ++ place_entity(cfs_rq, se, 0); + enqueue_sleeper(cfs_rq, se); ++ } + + update_stats_enqueue(cfs_rq, se); +- __enqueue_entity(cfs_rq, se); ++ check_spread(cfs_rq, se); ++ if (se != cfs_rq->curr) ++ __enqueue_entity(cfs_rq, se); ++ account_entity_enqueue(cfs_rq, se); + } + + static void + dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep) + { ++ /* ++ * Update run-time statistics of the 'current'. ++ */ ++ update_curr(cfs_rq); ++ + update_stats_dequeue(cfs_rq, se); + if (sleep) { +- se->sleep_start_fair = cfs_rq->fair_clock; + #ifdef CONFIG_SCHEDSTATS + if (entity_is_task(se)) { + struct task_struct *tsk = task_of(se); + + if (tsk->state & TASK_INTERRUPTIBLE) +@@ -683,72 +560,68 @@ dequeue_entity(struct cfs_rq *cfs_rq, st + if (tsk->state & TASK_UNINTERRUPTIBLE) + se->block_start = rq_of(cfs_rq)->clock; + } + #endif + } +- __dequeue_entity(cfs_rq, se); ++ ++ if (se != cfs_rq->curr) ++ __dequeue_entity(cfs_rq, se); ++ account_entity_dequeue(cfs_rq, se); + } + + /* + * Preempt the current task with a newly woken task if needed: + */ + static void +-__check_preempt_curr_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, +- struct sched_entity *curr, unsigned long granularity) ++check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr) + { +- s64 __delta = curr->fair_key - se->fair_key; + unsigned long ideal_runtime, delta_exec; + +- /* +- * ideal_runtime is compared against sum_exec_runtime, which is +- * walltime, hence do not scale. +- */ +- ideal_runtime = max(sysctl_sched_latency / cfs_rq->nr_running, +- (unsigned long)sysctl_sched_min_granularity); +- +- /* +- * If we executed more than what the latency constraint suggests, +- * reduce the rescheduling granularity. This way the total latency +- * of how much a task is not scheduled converges to +- * sysctl_sched_latency: +- */ ++ ideal_runtime = sched_slice(cfs_rq, curr); + delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime; + if (delta_exec > ideal_runtime) +- granularity = 0; +- +- /* +- * Take scheduling granularity into account - do not +- * preempt the current task unless the best task has +- * a larger than sched_granularity fairness advantage: +- * +- * scale granularity as key space is in fair_clock. +- */ +- if (__delta > niced_granularity(curr, granularity)) + resched_task(rq_of(cfs_rq)->curr); + } + +-static inline void ++static void + set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) + { +- /* +- * Any task has to be enqueued before it get to execute on +- * a CPU. So account for the time it spent waiting on the +- * runqueue. (note, here we rely on pick_next_task() having +- * done a put_prev_task_fair() shortly before this, which +- * updated rq->fair_clock - used by update_stats_wait_end()) +- */ +- update_stats_wait_end(cfs_rq, se); ++ /* 'current' is not kept within the tree. */ ++ if (se->on_rq) { ++ /* ++ * Any task has to be enqueued before it get to execute on ++ * a CPU. So account for the time it spent waiting on the ++ * runqueue. ++ */ ++ update_stats_wait_end(cfs_rq, se); ++ __dequeue_entity(cfs_rq, se); ++ } ++ + update_stats_curr_start(cfs_rq, se); +- set_cfs_rq_curr(cfs_rq, se); ++ cfs_rq->curr = se; ++#ifdef CONFIG_SCHEDSTATS ++ /* ++ * Track our maximum slice length, if the CPU's load is at ++ * least twice that of our own weight (i.e. dont track it ++ * when there are only lesser-weight tasks around): ++ */ ++ if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) { ++ se->slice_max = max(se->slice_max, ++ se->sum_exec_runtime - se->prev_sum_exec_runtime); ++ } ++#endif + se->prev_sum_exec_runtime = se->sum_exec_runtime; + } + + static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq) + { +- struct sched_entity *se = __pick_next_entity(cfs_rq); ++ struct sched_entity *se = NULL; + +- set_next_entity(cfs_rq, se); ++ if (first_fair(cfs_rq)) { ++ se = __pick_next_entity(cfs_rq); ++ set_next_entity(cfs_rq, se); ++ } + + return se; + } + + static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev) +@@ -758,37 +631,28 @@ static void put_prev_entity(struct cfs_r + * was not called and update_curr() has to be done: + */ + if (prev->on_rq) + update_curr(cfs_rq); + +- update_stats_curr_end(cfs_rq, prev); +- +- if (prev->on_rq) ++ check_spread(cfs_rq, prev); ++ if (prev->on_rq) { + update_stats_wait_start(cfs_rq, prev); +- set_cfs_rq_curr(cfs_rq, NULL); ++ /* Put 'current' back into the tree. */ ++ __enqueue_entity(cfs_rq, prev); ++ } ++ cfs_rq->curr = NULL; + } + + static void entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr) + { +- struct sched_entity *next; +- +- /* +- * Dequeue and enqueue the task to update its +- * position within the tree: +- */ +- dequeue_entity(cfs_rq, curr, 0); +- enqueue_entity(cfs_rq, curr, 0); +- + /* +- * Reschedule if another task tops the current one. ++ * Update run-time statistics of the 'current'. + */ +- next = __pick_next_entity(cfs_rq); +- if (next == curr) +- return; ++ update_curr(cfs_rq); + +- __check_preempt_curr_fair(cfs_rq, next, curr, +- sched_granularity(cfs_rq)); ++ if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT)) ++ check_preempt_tick(cfs_rq, curr); + } + + /************************************************** + * CFS operations on tasks: + */ +@@ -819,27 +683,32 @@ static inline struct cfs_rq *group_cfs_r + /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on + * another cpu ('this_cpu') + */ + static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu) + { +- /* A later patch will take group into account */ +- return &cpu_rq(this_cpu)->cfs; ++ return cfs_rq->tg->cfs_rq[this_cpu]; + } + + /* Iterate thr' all leaf cfs_rq's on a runqueue */ + #define for_each_leaf_cfs_rq(rq, cfs_rq) \ + list_for_each_entry(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list) + +-/* Do the two (enqueued) tasks belong to the same group ? */ +-static inline int is_same_group(struct task_struct *curr, struct task_struct *p) ++/* Do the two (enqueued) entities belong to the same group ? */ ++static inline int ++is_same_group(struct sched_entity *se, struct sched_entity *pse) + { +- if (curr->se.cfs_rq == p->se.cfs_rq) ++ if (se->cfs_rq == pse->cfs_rq) + return 1; + + return 0; + } + ++static inline struct sched_entity *parent_entity(struct sched_entity *se) ++{ ++ return se->parent; ++} ++ + #else /* CONFIG_FAIR_GROUP_SCHED */ + + #define for_each_sched_entity(se) \ + for (; se; se = NULL) + +@@ -868,15 +737,21 @@ static inline struct cfs_rq *cpu_cfs_rq( + } + + #define for_each_leaf_cfs_rq(rq, cfs_rq) \ + for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL) + +-static inline int is_same_group(struct task_struct *curr, struct task_struct *p) ++static inline int ++is_same_group(struct sched_entity *se, struct sched_entity *pse) + { + return 1; + } + ++static inline struct sched_entity *parent_entity(struct sched_entity *se) ++{ ++ return NULL; ++} ++ + #endif /* CONFIG_FAIR_GROUP_SCHED */ + + /* + * The enqueue_task method is called before nr_running is + * increased. Here we update the fair scheduling stats and +@@ -890,10 +765,11 @@ static void enqueue_task_fair(struct rq + for_each_sched_entity(se) { + if (se->on_rq) + break; + cfs_rq = cfs_rq_of(se); + enqueue_entity(cfs_rq, se, wakeup); ++ wakeup = 1; + } + } + + /* + * The dequeue_task method is called before nr_running is +@@ -909,97 +785,95 @@ static void dequeue_task_fair(struct rq + cfs_rq = cfs_rq_of(se); + dequeue_entity(cfs_rq, se, sleep); + /* Don't dequeue parent if it has other entities besides us */ + if (cfs_rq->load.weight) + break; ++ sleep = 1; + } + } + + /* + * sched_yield() support is very simple - we dequeue and enqueue. + * + * If compat_yield is turned on then we requeue to the end of the tree. + */ +-static void yield_task_fair(struct rq *rq, struct task_struct *p) ++static void yield_task_fair(struct rq *rq) + { +- struct cfs_rq *cfs_rq = task_cfs_rq(p); +- struct rb_node **link = &cfs_rq->tasks_timeline.rb_node; +- struct sched_entity *rightmost, *se = &p->se; +- struct rb_node *parent; ++ struct task_struct *curr = rq->curr; ++ struct cfs_rq *cfs_rq = task_cfs_rq(curr); ++ struct sched_entity *rightmost, *se = &curr->se; + + /* + * Are we the only task in the tree? + */ + if (unlikely(cfs_rq->nr_running == 1)) + return; + +- if (likely(!sysctl_sched_compat_yield)) { ++ if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) { + __update_rq_clock(rq); + /* +- * Dequeue and enqueue the task to update its +- * position within the tree: ++ * Update run-time statistics of the 'current'. + */ +- dequeue_entity(cfs_rq, &p->se, 0); +- enqueue_entity(cfs_rq, &p->se, 0); ++ update_curr(cfs_rq); + + return; + } + /* + * Find the rightmost entry in the rbtree: + */ +- do { +- parent = *link; +- link = &parent->rb_right; +- } while (*link); +- +- rightmost = rb_entry(parent, struct sched_entity, run_node); ++ rightmost = __pick_last_entity(cfs_rq); + /* + * Already in the rightmost position? + */ +- if (unlikely(rightmost == se)) ++ if (unlikely(rightmost->vruntime < se->vruntime)) + return; + + /* + * Minimally necessary key value to be last in the tree: ++ * Upon rescheduling, sched_class::put_prev_task() will place ++ * 'current' within the tree based on its new key value. + */ +- se->fair_key = rightmost->fair_key + 1; +- +- if (cfs_rq->rb_leftmost == &se->run_node) +- cfs_rq->rb_leftmost = rb_next(&se->run_node); +- /* +- * Relink the task to the rightmost position: +- */ +- rb_erase(&se->run_node, &cfs_rq->tasks_timeline); +- rb_link_node(&se->run_node, parent, link); +- rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline); ++ se->vruntime = rightmost->vruntime + 1; + } + + /* + * Preempt the current task with a newly woken task if needed: + */ +-static void check_preempt_curr_fair(struct rq *rq, struct task_struct *p) ++static void check_preempt_wakeup(struct rq *rq, struct task_struct *p) + { + struct task_struct *curr = rq->curr; + struct cfs_rq *cfs_rq = task_cfs_rq(curr); ++ struct sched_entity *se = &curr->se, *pse = &p->se; + unsigned long gran; + + if (unlikely(rt_prio(p->prio))) { + update_rq_clock(rq); + update_curr(cfs_rq); + resched_task(curr); + return; + } +- +- gran = sysctl_sched_wakeup_granularity; + /* +- * Batch tasks prefer throughput over latency: ++ * Batch tasks do not preempt (their preemption is driven by ++ * the tick): + */ + if (unlikely(p->policy == SCHED_BATCH)) +- gran = sysctl_sched_batch_wakeup_granularity; ++ return; ++ ++ if (!sched_feat(WAKEUP_PREEMPT)) ++ return; ++ ++ while (!is_same_group(se, pse)) { ++ se = parent_entity(se); ++ pse = parent_entity(pse); ++ } + +- if (is_same_group(curr, p)) +- __check_preempt_curr_fair(cfs_rq, &p->se, &curr->se, gran); ++ gran = sysctl_sched_wakeup_granularity; ++ if (unlikely(se->load.weight != NICE_0_LOAD)) ++ gran = calc_delta_fair(gran, &se->load); ++ ++ if (pse->vruntime + gran < se->vruntime) ++ resched_task(curr); + } + + static struct task_struct *pick_next_task_fair(struct rq *rq) + { + struct cfs_rq *cfs_rq = &rq->cfs; +@@ -1028,10 +902,11 @@ static void put_prev_task_fair(struct rq + cfs_rq = cfs_rq_of(se); + put_prev_entity(cfs_rq, se); + } + } + ++#ifdef CONFIG_SMP + /************************************************** + * Fair scheduling class load-balancing methods: + */ + + /* +@@ -1039,11 +914,11 @@ static void put_prev_task_fair(struct rq + * during the whole iteration, the current task might be + * dequeued so the iterator has to be dequeue-safe. Here we + * achieve that by always pre-iterating before returning + * the current task: + */ +-static inline struct task_struct * ++static struct task_struct * + __load_balance_iterator(struct cfs_rq *cfs_rq, struct rb_node *curr) + { + struct task_struct *p; + + if (!curr) +@@ -1076,25 +951,27 @@ static int cfs_rq_best_prio(struct cfs_r + struct task_struct *p; + + if (!cfs_rq->nr_running) + return MAX_PRIO; + +- curr = __pick_next_entity(cfs_rq); ++ curr = cfs_rq->curr; ++ if (!curr) ++ curr = __pick_next_entity(cfs_rq); ++ + p = task_of(curr); + + return p->prio; + } + #endif + + static unsigned long + load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest, +- unsigned long max_nr_move, unsigned long max_load_move, ++ unsigned long max_load_move, + struct sched_domain *sd, enum cpu_idle_type idle, + int *all_pinned, int *this_best_prio) + { + struct cfs_rq *busy_cfs_rq; +- unsigned long load_moved, total_nr_moved = 0, nr_moved; + long rem_load_move = max_load_move; + struct rq_iterator cfs_rq_iterator; + + cfs_rq_iterator.start = load_balance_start_fair; + cfs_rq_iterator.next = load_balance_next_fair; +@@ -1118,29 +995,52 @@ load_balance_fair(struct rq *this_rq, in + + *this_best_prio = cfs_rq_best_prio(this_cfs_rq); + #else + # define maxload rem_load_move + #endif +- /* pass busy_cfs_rq argument into ++ /* ++ * pass busy_cfs_rq argument into + * load_balance_[start|next]_fair iterators + */ + cfs_rq_iterator.arg = busy_cfs_rq; +- nr_moved = balance_tasks(this_rq, this_cpu, busiest, +- max_nr_move, maxload, sd, idle, all_pinned, +- &load_moved, this_best_prio, &cfs_rq_iterator); +- +- total_nr_moved += nr_moved; +- max_nr_move -= nr_moved; +- rem_load_move -= load_moved; ++ rem_load_move -= balance_tasks(this_rq, this_cpu, busiest, ++ maxload, sd, idle, all_pinned, ++ this_best_prio, ++ &cfs_rq_iterator); + +- if (max_nr_move <= 0 || rem_load_move <= 0) ++ if (rem_load_move <= 0) + break; + } + + return max_load_move - rem_load_move; + } + ++static int ++move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest, ++ struct sched_domain *sd, enum cpu_idle_type idle) ++{ ++ struct cfs_rq *busy_cfs_rq; ++ struct rq_iterator cfs_rq_iterator; ++ ++ cfs_rq_iterator.start = load_balance_start_fair; ++ cfs_rq_iterator.next = load_balance_next_fair; ++ ++ for_each_leaf_cfs_rq(busiest, busy_cfs_rq) { ++ /* ++ * pass busy_cfs_rq argument into ++ * load_balance_[start|next]_fair iterators ++ */ ++ cfs_rq_iterator.arg = busy_cfs_rq; ++ if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle, ++ &cfs_rq_iterator)) ++ return 1; ++ } ++ ++ return 0; ++} ++#endif ++ + /* + * scheduler tick hitting a task of our scheduling class: + */ + static void task_tick_fair(struct rq *rq, struct task_struct *curr) + { +@@ -1151,51 +1051,44 @@ static void task_tick_fair(struct rq *rq + cfs_rq = cfs_rq_of(se); + entity_tick(cfs_rq, se); + } + } + ++#define swap(a, b) do { typeof(a) tmp = (a); (a) = (b); (b) = tmp; } while (0) ++ + /* + * Share the fairness runtime between parent and child, thus the + * total amount of pressure for CPU stays equal - new tasks + * get a chance to run but frequent forkers are not allowed to + * monopolize the CPU. Note: the parent runqueue is locked, + * the child is not running yet. + */ + static void task_new_fair(struct rq *rq, struct task_struct *p) + { + struct cfs_rq *cfs_rq = task_cfs_rq(p); +- struct sched_entity *se = &p->se, *curr = cfs_rq_curr(cfs_rq); ++ struct sched_entity *se = &p->se, *curr = cfs_rq->curr; ++ int this_cpu = smp_processor_id(); + + sched_info_queued(p); + + update_curr(cfs_rq); +- update_stats_enqueue(cfs_rq, se); +- /* +- * Child runs first: we let it run before the parent +- * until it reschedules once. We set up the key so that +- * it will preempt the parent: +- */ +- se->fair_key = curr->fair_key - +- niced_granularity(curr, sched_granularity(cfs_rq)) - 1; +- /* +- * The first wait is dominated by the child-runs-first logic, +- * so do not credit it with that waiting time yet: +- */ +- if (sysctl_sched_features & SCHED_FEAT_SKIP_INITIAL) +- se->wait_start_fair = 0; ++ place_entity(cfs_rq, se, 1); + +- /* +- * The statistical average of wait_runtime is about +- * -granularity/2, so initialize the task with that: +- */ +- if (sysctl_sched_features & SCHED_FEAT_START_DEBIT) +- se->wait_runtime = -(sched_granularity(cfs_rq) / 2); ++ /* 'curr' will be NULL if the child belongs to a different group */ ++ if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) && ++ curr && curr->vruntime < se->vruntime) { ++ /* ++ * Upon rescheduling, sched_class::put_prev_task() will place ++ * 'current' within the tree based on its new key value. ++ */ ++ swap(curr->vruntime, se->vruntime); ++ } + +- __enqueue_entity(cfs_rq, se); ++ enqueue_task_fair(rq, p, 0); ++ resched_task(rq->curr); + } + +-#ifdef CONFIG_FAIR_GROUP_SCHED + /* Account for a task changing its policy or group. + * + * This routine is mostly called to set cfs_rq->curr field when a task + * migrates between groups/classes. + */ +@@ -1204,30 +1097,29 @@ static void set_curr_task_fair(struct rq + struct sched_entity *se = &rq->curr->se; + + for_each_sched_entity(se) + set_next_entity(cfs_rq_of(se), se); + } +-#else +-static void set_curr_task_fair(struct rq *rq) +-{ +-} +-#endif + + /* + * All the scheduling class methods: + */ +-struct sched_class fair_sched_class __read_mostly = { ++static const struct sched_class fair_sched_class = { ++ .next = &idle_sched_class, + .enqueue_task = enqueue_task_fair, + .dequeue_task = dequeue_task_fair, + .yield_task = yield_task_fair, + +- .check_preempt_curr = check_preempt_curr_fair, ++ .check_preempt_curr = check_preempt_wakeup, + + .pick_next_task = pick_next_task_fair, + .put_prev_task = put_prev_task_fair, + ++#ifdef CONFIG_SMP + .load_balance = load_balance_fair, ++ .move_one_task = move_one_task_fair, ++#endif + + .set_curr_task = set_curr_task_fair, + .task_tick = task_tick_fair, + .task_new = task_new_fair, + }; +@@ -1235,9 +1127,12 @@ struct sched_class fair_sched_class __re + #ifdef CONFIG_SCHED_DEBUG + static void print_cfs_stats(struct seq_file *m, int cpu) + { + struct cfs_rq *cfs_rq; + ++#ifdef CONFIG_FAIR_GROUP_SCHED ++ print_cfs_rq(m, cpu, &cpu_rq(cpu)->cfs); ++#endif + for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq) + print_cfs_rq(m, cpu, cfs_rq); + } + #endif +--- linux-2.6.23.orig/kernel/sched_idletask.c ++++ linux-2.6.23/kernel/sched_idletask.c +@@ -35,37 +35,55 @@ dequeue_task_idle(struct rq *rq, struct + + static void put_prev_task_idle(struct rq *rq, struct task_struct *prev) + { + } + ++#ifdef CONFIG_SMP + static unsigned long + load_balance_idle(struct rq *this_rq, int this_cpu, struct rq *busiest, +- unsigned long max_nr_move, unsigned long max_load_move, +- struct sched_domain *sd, enum cpu_idle_type idle, +- int *all_pinned, int *this_best_prio) ++ unsigned long max_load_move, ++ struct sched_domain *sd, enum cpu_idle_type idle, ++ int *all_pinned, int *this_best_prio) + { + return 0; + } + ++static int ++move_one_task_idle(struct rq *this_rq, int this_cpu, struct rq *busiest, ++ struct sched_domain *sd, enum cpu_idle_type idle) ++{ ++ return 0; ++} ++#endif ++ + static void task_tick_idle(struct rq *rq, struct task_struct *curr) + { + } + ++static void set_curr_task_idle(struct rq *rq) ++{ ++} ++ + /* + * Simple, special scheduling class for the per-CPU idle tasks: + */ +-static struct sched_class idle_sched_class __read_mostly = { ++const struct sched_class idle_sched_class = { ++ /* .next is NULL */ + /* no enqueue/yield_task for idle tasks */ + + /* dequeue is not valid, we print a debug message there: */ + .dequeue_task = dequeue_task_idle, + + .check_preempt_curr = check_preempt_curr_idle, + + .pick_next_task = pick_next_task_idle, + .put_prev_task = put_prev_task_idle, + ++#ifdef CONFIG_SMP + .load_balance = load_balance_idle, ++ .move_one_task = move_one_task_idle, ++#endif + ++ .set_curr_task = set_curr_task_idle, + .task_tick = task_tick_idle, + /* no .task_new for idle tasks */ + }; +--- linux-2.6.23.orig/kernel/sched_rt.c ++++ linux-2.6.23/kernel/sched_rt.c +@@ -5,11 +5,11 @@ + + /* + * Update the current task's runtime statistics. Skip current tasks that + * are not in our scheduling class. + */ +-static inline void update_curr_rt(struct rq *rq) ++static void update_curr_rt(struct rq *rq) + { + struct task_struct *curr = rq->curr; + u64 delta_exec; + + if (!task_has_rt_policy(curr)) +@@ -21,10 +21,11 @@ static inline void update_curr_rt(struct + + schedstat_set(curr->se.exec_max, max(curr->se.exec_max, delta_exec)); + + curr->se.sum_exec_runtime += delta_exec; + curr->se.exec_start = rq->clock; ++ cpuacct_charge(curr, delta_exec); + } + + static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup) + { + struct rt_prio_array *array = &rq->rt.active; +@@ -57,13 +58,13 @@ static void requeue_task_rt(struct rq *r + + list_move_tail(&p->run_list, array->queue + p->prio); + } + + static void +-yield_task_rt(struct rq *rq, struct task_struct *p) ++yield_task_rt(struct rq *rq) + { +- requeue_task_rt(rq, p); ++ requeue_task_rt(rq, rq->curr); + } + + /* + * Preempt the current task with a newly woken task if needed: + */ +@@ -96,10 +97,11 @@ static void put_prev_task_rt(struct rq * + { + update_curr_rt(rq); + p->se.exec_start = 0; + } + ++#ifdef CONFIG_SMP + /* + * Load-balancing iterator. Note: while the runqueue stays locked + * during the whole iteration, the current task might be + * dequeued so the iterator has to be dequeue-safe. Here we + * achieve that by always pre-iterating before returning +@@ -170,45 +172,57 @@ static struct task_struct *load_balance_ + return p; + } + + static unsigned long + load_balance_rt(struct rq *this_rq, int this_cpu, struct rq *busiest, +- unsigned long max_nr_move, unsigned long max_load_move, +- struct sched_domain *sd, enum cpu_idle_type idle, +- int *all_pinned, int *this_best_prio) ++ unsigned long max_load_move, ++ struct sched_domain *sd, enum cpu_idle_type idle, ++ int *all_pinned, int *this_best_prio) + { +- int nr_moved; + struct rq_iterator rt_rq_iterator; +- unsigned long load_moved; + + rt_rq_iterator.start = load_balance_start_rt; + rt_rq_iterator.next = load_balance_next_rt; + /* pass 'busiest' rq argument into + * load_balance_[start|next]_rt iterators + */ + rt_rq_iterator.arg = busiest; + +- nr_moved = balance_tasks(this_rq, this_cpu, busiest, max_nr_move, +- max_load_move, sd, idle, all_pinned, &load_moved, +- this_best_prio, &rt_rq_iterator); ++ return balance_tasks(this_rq, this_cpu, busiest, max_load_move, sd, ++ idle, all_pinned, this_best_prio, &rt_rq_iterator); ++} ++ ++static int ++move_one_task_rt(struct rq *this_rq, int this_cpu, struct rq *busiest, ++ struct sched_domain *sd, enum cpu_idle_type idle) ++{ ++ struct rq_iterator rt_rq_iterator; ++ ++ rt_rq_iterator.start = load_balance_start_rt; ++ rt_rq_iterator.next = load_balance_next_rt; ++ rt_rq_iterator.arg = busiest; + +- return load_moved; ++ return iter_move_one_task(this_rq, this_cpu, busiest, sd, idle, ++ &rt_rq_iterator); + } ++#endif + + static void task_tick_rt(struct rq *rq, struct task_struct *p) + { ++ update_curr_rt(rq); ++ + /* + * RR tasks need a special form of timeslice management. + * FIFO tasks have no timeslices. + */ + if (p->policy != SCHED_RR) + return; + + if (--p->time_slice) + return; + +- p->time_slice = static_prio_timeslice(p->static_prio); ++ p->time_slice = DEF_TIMESLICE; + + /* + * Requeue to the end of queue if we are not the only element + * on the queue: + */ +@@ -216,19 +230,31 @@ static void task_tick_rt(struct rq *rq, + requeue_task_rt(rq, p); + set_tsk_need_resched(p); + } + } + +-static struct sched_class rt_sched_class __read_mostly = { ++static void set_curr_task_rt(struct rq *rq) ++{ ++ struct task_struct *p = rq->curr; ++ ++ p->se.exec_start = rq->clock; ++} ++ ++const struct sched_class rt_sched_class = { ++ .next = &fair_sched_class, + .enqueue_task = enqueue_task_rt, + .dequeue_task = dequeue_task_rt, + .yield_task = yield_task_rt, + + .check_preempt_curr = check_preempt_curr_rt, + + .pick_next_task = pick_next_task_rt, + .put_prev_task = put_prev_task_rt, + ++#ifdef CONFIG_SMP + .load_balance = load_balance_rt, ++ .move_one_task = move_one_task_rt, ++#endif + ++ .set_curr_task = set_curr_task_rt, + .task_tick = task_tick_rt, + }; +--- linux-2.6.23.orig/kernel/sched_stats.h ++++ linux-2.6.23/kernel/sched_stats.h +@@ -14,22 +14,22 @@ static int show_schedstat(struct seq_fil + seq_printf(seq, "timestamp %lu\n", jiffies); + for_each_online_cpu(cpu) { + struct rq *rq = cpu_rq(cpu); + #ifdef CONFIG_SMP + struct sched_domain *sd; +- int dcnt = 0; ++ int dcount = 0; + #endif + + /* runqueue-specific stats */ + seq_printf(seq, +- "cpu%d %lu %lu %lu %lu %lu %lu %lu %lu %lu %llu %llu %lu", ++ "cpu%d %u %u %u %u %u %u %u %u %u %llu %llu %lu", + cpu, rq->yld_both_empty, +- rq->yld_act_empty, rq->yld_exp_empty, rq->yld_cnt, +- rq->sched_switch, rq->sched_cnt, rq->sched_goidle, +- rq->ttwu_cnt, rq->ttwu_local, ++ rq->yld_act_empty, rq->yld_exp_empty, rq->yld_count, ++ rq->sched_switch, rq->sched_count, rq->sched_goidle, ++ rq->ttwu_count, rq->ttwu_local, + rq->rq_sched_info.cpu_time, +- rq->rq_sched_info.run_delay, rq->rq_sched_info.pcnt); ++ rq->rq_sched_info.run_delay, rq->rq_sched_info.pcount); + + seq_printf(seq, "\n"); + + #ifdef CONFIG_SMP + /* domain-specific stats */ +@@ -37,29 +37,28 @@ static int show_schedstat(struct seq_fil + for_each_domain(cpu, sd) { + enum cpu_idle_type itype; + char mask_str[NR_CPUS]; + + cpumask_scnprintf(mask_str, NR_CPUS, sd->span); +- seq_printf(seq, "domain%d %s", dcnt++, mask_str); ++ seq_printf(seq, "domain%d %s", dcount++, mask_str); + for (itype = CPU_IDLE; itype < CPU_MAX_IDLE_TYPES; + itype++) { +- seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu " +- "%lu", +- sd->lb_cnt[itype], ++ seq_printf(seq, " %u %u %u %u %u %u %u %u", ++ sd->lb_count[itype], + sd->lb_balanced[itype], + sd->lb_failed[itype], + sd->lb_imbalance[itype], + sd->lb_gained[itype], + sd->lb_hot_gained[itype], + sd->lb_nobusyq[itype], + sd->lb_nobusyg[itype]); + } +- seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu %lu" +- " %lu %lu %lu\n", +- sd->alb_cnt, sd->alb_failed, sd->alb_pushed, +- sd->sbe_cnt, sd->sbe_balanced, sd->sbe_pushed, +- sd->sbf_cnt, sd->sbf_balanced, sd->sbf_pushed, ++ seq_printf(seq, ++ " %u %u %u %u %u %u %u %u %u %u %u %u\n", ++ sd->alb_count, sd->alb_failed, sd->alb_pushed, ++ sd->sbe_count, sd->sbe_balanced, sd->sbe_pushed, ++ sd->sbf_count, sd->sbf_balanced, sd->sbf_pushed, + sd->ttwu_wake_remote, sd->ttwu_move_affine, + sd->ttwu_move_balance); + } + preempt_enable(); + #endif +@@ -99,11 +98,11 @@ const struct file_operations proc_scheds + static inline void + rq_sched_info_arrive(struct rq *rq, unsigned long long delta) + { + if (rq) { + rq->rq_sched_info.run_delay += delta; +- rq->rq_sched_info.pcnt++; ++ rq->rq_sched_info.pcount++; + } + } + + /* + * Expects runqueue lock to be held for atomicity of update +@@ -155,18 +154,18 @@ static inline void sched_info_dequeued(s + * long it was waiting to run. We also note when it began so that we + * can keep stats on how long its timeslice is. + */ + static void sched_info_arrive(struct task_struct *t) + { +- unsigned long long now = sched_clock(), delta = 0; ++ unsigned long long now = task_rq(t)->clock, delta = 0; + + if (t->sched_info.last_queued) + delta = now - t->sched_info.last_queued; + sched_info_dequeued(t); + t->sched_info.run_delay += delta; + t->sched_info.last_arrival = now; +- t->sched_info.pcnt++; ++ t->sched_info.pcount++; + + rq_sched_info_arrive(task_rq(t), delta); + } + + /* +@@ -186,20 +185,21 @@ static void sched_info_arrive(struct tas + */ + static inline void sched_info_queued(struct task_struct *t) + { + if (unlikely(sched_info_on())) + if (!t->sched_info.last_queued) +- t->sched_info.last_queued = sched_clock(); ++ t->sched_info.last_queued = task_rq(t)->clock; + } + + /* + * Called when a process ceases being the active-running process, either + * voluntarily or involuntarily. Now we can calculate how long we ran. + */ + static inline void sched_info_depart(struct task_struct *t) + { +- unsigned long long delta = sched_clock() - t->sched_info.last_arrival; ++ unsigned long long delta = task_rq(t)->clock - ++ t->sched_info.last_arrival; + + t->sched_info.cpu_time += delta; + rq_sched_info_depart(task_rq(t), delta); + } + +--- linux-2.6.23.orig/kernel/sysctl.c ++++ linux-2.6.23/kernel/sysctl.c +@@ -211,35 +211,35 @@ static ctl_table root_table[] = { + { .ctl_name = 0 } + }; + + #ifdef CONFIG_SCHED_DEBUG + static unsigned long min_sched_granularity_ns = 100000; /* 100 usecs */ +-static unsigned long max_sched_granularity_ns = 1000000000; /* 1 second */ ++static unsigned long max_sched_granularity_ns = NSEC_PER_SEC; /* 1 second */ + static unsigned long min_wakeup_granularity_ns; /* 0 usecs */ +-static unsigned long max_wakeup_granularity_ns = 1000000000; /* 1 second */ ++static unsigned long max_wakeup_granularity_ns = NSEC_PER_SEC; /* 1 second */ + #endif + +-static ctl_table kern_table[] = { ++static struct ctl_table kern_table[] = { + #ifdef CONFIG_SCHED_DEBUG + { + .ctl_name = CTL_UNNUMBERED, + .procname = "sched_min_granularity_ns", + .data = &sysctl_sched_min_granularity, + .maxlen = sizeof(unsigned int), + .mode = 0644, +- .proc_handler = &proc_dointvec_minmax, ++ .proc_handler = &sched_nr_latency_handler, + .strategy = &sysctl_intvec, + .extra1 = &min_sched_granularity_ns, + .extra2 = &max_sched_granularity_ns, + }, + { + .ctl_name = CTL_UNNUMBERED, + .procname = "sched_latency_ns", + .data = &sysctl_sched_latency, + .maxlen = sizeof(unsigned int), + .mode = 0644, +- .proc_handler = &proc_dointvec_minmax, ++ .proc_handler = &sched_nr_latency_handler, + .strategy = &sysctl_intvec, + .extra1 = &min_sched_granularity_ns, + .extra2 = &max_sched_granularity_ns, + }, + { +@@ -264,47 +264,43 @@ static ctl_table kern_table[] = { + .extra1 = &min_wakeup_granularity_ns, + .extra2 = &max_wakeup_granularity_ns, + }, + { + .ctl_name = CTL_UNNUMBERED, +- .procname = "sched_stat_granularity_ns", +- .data = &sysctl_sched_stat_granularity, ++ .procname = "sched_child_runs_first", ++ .data = &sysctl_sched_child_runs_first, + .maxlen = sizeof(unsigned int), + .mode = 0644, +- .proc_handler = &proc_dointvec_minmax, +- .strategy = &sysctl_intvec, +- .extra1 = &min_wakeup_granularity_ns, +- .extra2 = &max_wakeup_granularity_ns, ++ .proc_handler = &proc_dointvec, + }, + { + .ctl_name = CTL_UNNUMBERED, +- .procname = "sched_runtime_limit_ns", +- .data = &sysctl_sched_runtime_limit, ++ .procname = "sched_features", ++ .data = &sysctl_sched_features, + .maxlen = sizeof(unsigned int), + .mode = 0644, +- .proc_handler = &proc_dointvec_minmax, +- .strategy = &sysctl_intvec, +- .extra1 = &min_sched_granularity_ns, +- .extra2 = &max_sched_granularity_ns, ++ .proc_handler = &proc_dointvec, + }, + { + .ctl_name = CTL_UNNUMBERED, +- .procname = "sched_child_runs_first", +- .data = &sysctl_sched_child_runs_first, ++ .procname = "sched_migration_cost", ++ .data = &sysctl_sched_migration_cost, + .maxlen = sizeof(unsigned int), + .mode = 0644, + .proc_handler = &proc_dointvec, + }, ++#if defined(CONFIG_FAIR_GROUP_SCHED) && defined(CONFIG_SMP) + { + .ctl_name = CTL_UNNUMBERED, +- .procname = "sched_features", +- .data = &sysctl_sched_features, ++ .procname = "sched_nr_migrate", ++ .data = &sysctl_sched_nr_migrate, + .maxlen = sizeof(unsigned int), +- .mode = 0644, ++ .mode = 644, + .proc_handler = &proc_dointvec, + }, + #endif ++#endif + { + .ctl_name = CTL_UNNUMBERED, + .procname = "sched_compat_yield", + .data = &sysctl_sched_compat_yield, + .maxlen = sizeof(unsigned int), +--- linux-2.6.23.orig/kernel/timer.c ++++ linux-2.6.23/kernel/timer.c +@@ -824,14 +824,17 @@ void update_process_times(int user_tick) + { + struct task_struct *p = current; + int cpu = smp_processor_id(); + + /* Note: this timer irq context must be accounted for as well. */ +- if (user_tick) ++ if (user_tick) { + account_user_time(p, jiffies_to_cputime(1)); +- else ++ account_user_time_scaled(p, jiffies_to_cputime(1)); ++ } else { + account_system_time(p, HARDIRQ_OFFSET, jiffies_to_cputime(1)); ++ account_system_time_scaled(p, jiffies_to_cputime(1)); ++ } + run_local_timers(); + if (rcu_pending(cpu)) + rcu_check_callbacks(cpu, user_tick); + scheduler_tick(); + run_posix_cpu_timers(p); +--- linux-2.6.23.orig/kernel/tsacct.c ++++ linux-2.6.23/kernel/tsacct.c +@@ -60,10 +60,14 @@ void bacct_add_tsk(struct taskstats *sta + stats->ac_ppid = pid_alive(tsk) ? + rcu_dereference(tsk->real_parent)->tgid : 0; + rcu_read_unlock(); + stats->ac_utime = cputime_to_msecs(tsk->utime) * USEC_PER_MSEC; + stats->ac_stime = cputime_to_msecs(tsk->stime) * USEC_PER_MSEC; ++ stats->ac_utimescaled = ++ cputime_to_msecs(tsk->utimescaled) * USEC_PER_MSEC; ++ stats->ac_stimescaled = ++ cputime_to_msecs(tsk->stimescaled) * USEC_PER_MSEC; + stats->ac_minflt = tsk->min_flt; + stats->ac_majflt = tsk->maj_flt; + + strncpy(stats->ac_comm, tsk->comm, sizeof(stats->ac_comm)); + } +--- linux-2.6.23.orig/kernel/user.c ++++ linux-2.6.23/kernel/user.c +@@ -48,40 +48,242 @@ struct user_struct root_user = { + .locked_shm = 0, + #ifdef CONFIG_KEYS + .uid_keyring = &root_user_keyring, + .session_keyring = &root_session_keyring, + #endif ++#ifdef CONFIG_FAIR_USER_SCHED ++ .tg = &init_task_group, ++#endif + }; + + /* + * These routines must be called with the uidhash spinlock held! + */ +-static inline void uid_hash_insert(struct user_struct *up, struct hlist_head *hashent) ++static inline void uid_hash_insert(struct user_struct *up, ++ struct hlist_head *hashent) + { + hlist_add_head(&up->uidhash_node, hashent); + } + + static inline void uid_hash_remove(struct user_struct *up) + { + hlist_del_init(&up->uidhash_node); + } + +-static inline struct user_struct *uid_hash_find(uid_t uid, struct hlist_head *hashent) ++static inline struct user_struct *uid_hash_find(uid_t uid, ++ struct hlist_head *hashent) + { + struct user_struct *user; + struct hlist_node *h; + + hlist_for_each_entry(user, h, hashent, uidhash_node) { +- if(user->uid == uid) { ++ if (user->uid == uid) { + atomic_inc(&user->__count); + return user; + } + } + + return NULL; + } + ++#ifdef CONFIG_FAIR_USER_SCHED ++ ++static struct kobject uids_kobject; /* represents /sys/kernel/uids directory */ ++static DEFINE_MUTEX(uids_mutex); ++ ++static void sched_destroy_user(struct user_struct *up) ++{ ++ sched_destroy_group(up->tg); ++} ++ ++static int sched_create_user(struct user_struct *up) ++{ ++ int rc = 0; ++ ++ up->tg = sched_create_group(); ++ if (IS_ERR(up->tg)) ++ rc = -ENOMEM; ++ ++ return rc; ++} ++ ++static void sched_switch_user(struct task_struct *p) ++{ ++ sched_move_task(p); ++} ++ ++static inline void uids_mutex_lock(void) ++{ ++ mutex_lock(&uids_mutex); ++} ++ ++static inline void uids_mutex_unlock(void) ++{ ++ mutex_unlock(&uids_mutex); ++} ++ ++/* return cpu shares held by the user */ ++ssize_t cpu_shares_show(struct kset *kset, char *buffer) ++{ ++ struct user_struct *up = container_of(kset, struct user_struct, kset); ++ ++ return sprintf(buffer, "%lu\n", sched_group_shares(up->tg)); ++} ++ ++/* modify cpu shares held by the user */ ++ssize_t cpu_shares_store(struct kset *kset, const char *buffer, size_t size) ++{ ++ struct user_struct *up = container_of(kset, struct user_struct, kset); ++ unsigned long shares; ++ int rc; ++ ++ sscanf(buffer, "%lu", &shares); ++ ++ rc = sched_group_set_shares(up->tg, shares); ++ ++ return (rc ? rc : size); ++} ++ ++static void user_attr_init(struct subsys_attribute *sa, char *name, int mode) ++{ ++ sa->attr.name = name; sa->attr.owner = NULL; ++ sa->attr.mode = mode; ++ sa->show = cpu_shares_show; ++ sa->store = cpu_shares_store; ++} ++ ++/* Create "/sys/kernel/uids/<uid>" directory and ++ * "/sys/kernel/uids/<uid>/cpu_share" file for this user. ++ */ ++static int user_kobject_create(struct user_struct *up) ++{ ++ struct kset *kset = &up->kset; ++ struct kobject *kobj = &kset->kobj; ++ int error; ++ ++ memset(kset, 0, sizeof(struct kset)); ++ kobj->parent = &uids_kobject; /* create under /sys/kernel/uids dir */ ++ kobject_set_name(kobj, "%d", up->uid); ++ kset_init(kset); ++ user_attr_init(&up->user_attr, "cpu_share", 0644); ++ ++ error = kobject_add(kobj); ++ if (error) ++ goto done; ++ ++ error = sysfs_create_file(kobj, &up->user_attr.attr); ++ if (error) ++ kobject_del(kobj); ++ ++ kobject_uevent(kobj, KOBJ_ADD); ++ ++done: ++ return error; ++} ++ ++/* create these in sysfs filesystem: ++ * "/sys/kernel/uids" directory ++ * "/sys/kernel/uids/0" directory (for root user) ++ * "/sys/kernel/uids/0/cpu_share" file (for root user) ++ */ ++int __init uids_kobject_init(void) ++{ ++ int error; ++ ++ /* create under /sys/kernel dir */ ++ uids_kobject.parent = &kernel_subsys.kobj; ++ uids_kobject.kset = &kernel_subsys; ++ kobject_set_name(&uids_kobject, "uids"); ++ kobject_init(&uids_kobject); ++ ++ error = kobject_add(&uids_kobject); ++ if (!error) ++ error = user_kobject_create(&root_user); ++ ++ return error; ++} ++ ++/* work function to remove sysfs directory for a user and free up ++ * corresponding structures. ++ */ ++static void remove_user_sysfs_dir(struct work_struct *w) ++{ ++ struct user_struct *up = container_of(w, struct user_struct, work); ++ struct kobject *kobj = &up->kset.kobj; ++ unsigned long flags; ++ int remove_user = 0; ++ ++ /* Make uid_hash_remove() + sysfs_remove_file() + kobject_del() ++ * atomic. ++ */ ++ uids_mutex_lock(); ++ ++ local_irq_save(flags); ++ ++ if (atomic_dec_and_lock(&up->__count, &uidhash_lock)) { ++ uid_hash_remove(up); ++ remove_user = 1; ++ spin_unlock_irqrestore(&uidhash_lock, flags); ++ } else { ++ local_irq_restore(flags); ++ } ++ ++ if (!remove_user) ++ goto done; ++ ++ sysfs_remove_file(kobj, &up->user_attr.attr); ++ kobject_uevent(kobj, KOBJ_REMOVE); ++ kobject_del(kobj); ++ ++ sched_destroy_user(up); ++ key_put(up->uid_keyring); ++ key_put(up->session_keyring); ++ kmem_cache_free(uid_cachep, up); ++ ++done: ++ uids_mutex_unlock(); ++} ++ ++/* IRQs are disabled and uidhash_lock is held upon function entry. ++ * IRQ state (as stored in flags) is restored and uidhash_lock released ++ * upon function exit. ++ */ ++static inline void free_user(struct user_struct *up, unsigned long flags) ++{ ++ /* restore back the count */ ++ atomic_inc(&up->__count); ++ spin_unlock_irqrestore(&uidhash_lock, flags); ++ ++ INIT_WORK(&up->work, remove_user_sysfs_dir); ++ schedule_work(&up->work); ++} ++ ++#else /* CONFIG_FAIR_USER_SCHED */ ++ ++static void sched_destroy_user(struct user_struct *up) { } ++static int sched_create_user(struct user_struct *up) { return 0; } ++static void sched_switch_user(struct task_struct *p) { } ++static inline int user_kobject_create(struct user_struct *up) { return 0; } ++static inline void uids_mutex_lock(void) { } ++static inline void uids_mutex_unlock(void) { } ++ ++/* IRQs are disabled and uidhash_lock is held upon function entry. ++ * IRQ state (as stored in flags) is restored and uidhash_lock released ++ * upon function exit. ++ */ ++static inline void free_user(struct user_struct *up, unsigned long flags) ++{ ++ uid_hash_remove(up); ++ spin_unlock_irqrestore(&uidhash_lock, flags); ++ sched_destroy_user(up); ++ key_put(up->uid_keyring); ++ key_put(up->session_keyring); ++ kmem_cache_free(uid_cachep, up); ++} ++ ++#endif /* CONFIG_FAIR_USER_SCHED */ ++ + /* + * Locate the user_struct for the passed UID. If found, take a ref on it. The + * caller must undo that ref with free_uid(). + * + * If the user_struct could not be found, return NULL. +@@ -104,26 +306,26 @@ void free_uid(struct user_struct *up) + + if (!up) + return; + + local_irq_save(flags); +- if (atomic_dec_and_lock(&up->__count, &uidhash_lock)) { +- uid_hash_remove(up); +- spin_unlock_irqrestore(&uidhash_lock, flags); +- key_put(up->uid_keyring); +- key_put(up->session_keyring); +- kmem_cache_free(uid_cachep, up); +- } else { ++ if (atomic_dec_and_lock(&up->__count, &uidhash_lock)) ++ free_user(up, flags); ++ else + local_irq_restore(flags); +- } + } + + struct user_struct * alloc_uid(struct user_namespace *ns, uid_t uid) + { + struct hlist_head *hashent = uidhashentry(ns, uid); + struct user_struct *up; + ++ /* Make uid_hash_find() + user_kobject_create() + uid_hash_insert() ++ * atomic. ++ */ ++ uids_mutex_lock(); ++ + spin_lock_irq(&uidhash_lock); + up = uid_hash_find(uid, hashent); + spin_unlock_irq(&uidhash_lock); + + if (!up) { +@@ -148,27 +350,51 @@ struct user_struct * alloc_uid(struct us + if (alloc_uid_keyring(new, current) < 0) { + kmem_cache_free(uid_cachep, new); + return NULL; + } + ++ if (sched_create_user(new) < 0) { ++ key_put(new->uid_keyring); ++ key_put(new->session_keyring); ++ kmem_cache_free(uid_cachep, new); ++ return NULL; ++ } ++ ++ if (user_kobject_create(new)) { ++ sched_destroy_user(new); ++ key_put(new->uid_keyring); ++ key_put(new->session_keyring); ++ kmem_cache_free(uid_cachep, new); ++ uids_mutex_unlock(); ++ return NULL; ++ } ++ + /* + * Before adding this, check whether we raced + * on adding the same user already.. + */ + spin_lock_irq(&uidhash_lock); + up = uid_hash_find(uid, hashent); + if (up) { ++ /* This case is not possible when CONFIG_FAIR_USER_SCHED ++ * is defined, since we serialize alloc_uid() using ++ * uids_mutex. Hence no need to call ++ * sched_destroy_user() or remove_user_sysfs_dir(). ++ */ + key_put(new->uid_keyring); + key_put(new->session_keyring); + kmem_cache_free(uid_cachep, new); + } else { + uid_hash_insert(new, hashent); + up = new; + } + spin_unlock_irq(&uidhash_lock); + + } ++ ++ uids_mutex_unlock(); ++ + return up; + } + + void switch_uid(struct user_struct *new_user) + { +@@ -182,10 +408,11 @@ void switch_uid(struct user_struct *new_ + old_user = current->user; + atomic_inc(&new_user->processes); + atomic_dec(&old_user->processes); + switch_uid_keyring(new_user); + current->user = new_user; ++ sched_switch_user(current); + + /* + * We need to synchronize with __sigqueue_alloc() + * doing a get_uid(p->user).. If that saw the old + * user value, we need to wait until it has exited +--- linux-2.6.23.orig/mm/memory_hotplug.c ++++ linux-2.6.23/mm/memory_hotplug.c +@@ -215,10 +215,14 @@ int online_pages(unsigned long pfn, unsi + } + zone->present_pages += onlined_pages; + zone->zone_pgdat->node_present_pages += onlined_pages; + + setup_per_zone_pages_min(); ++ if (onlined_pages) { ++ kswapd_run(zone_to_nid(zone)); ++ node_set_state(zone_to_nid(zone), N_HIGH_MEMORY); ++ } + + if (need_zonelists_rebuild) + build_all_zonelists(); + vm_total_pages = nr_free_pagecache_pages(); + writeback_set_ratelimit(); +@@ -269,13 +273,10 @@ int add_memory(int nid, u64 start, u64 s + if (!node_online(nid)) { + pgdat = hotadd_new_pgdat(nid, start); + if (!pgdat) + return -ENOMEM; + new_pgdat = 1; +- ret = kswapd_run(nid); +- if (ret) +- goto error; + } + + /* call arch's memory hotadd */ + ret = arch_add_memory(nid, start, size); + +--- linux-2.6.23.orig/mm/page_alloc.c ++++ linux-2.6.23/mm/page_alloc.c +@@ -45,17 +45,25 @@ + #include <asm/tlbflush.h> + #include <asm/div64.h> + #include "internal.h" + + /* +- * MCD - HACK: Find somewhere to initialize this EARLY, or make this +- * initializer cleaner ++ * Array of node states. + */ +-nodemask_t node_online_map __read_mostly = { { [0] = 1UL } }; +-EXPORT_SYMBOL(node_online_map); +-nodemask_t node_possible_map __read_mostly = NODE_MASK_ALL; +-EXPORT_SYMBOL(node_possible_map); ++nodemask_t node_states[NR_NODE_STATES] __read_mostly = { ++ [N_POSSIBLE] = NODE_MASK_ALL, ++ [N_ONLINE] = { { [0] = 1UL } }, ++#ifndef CONFIG_NUMA ++ [N_NORMAL_MEMORY] = { { [0] = 1UL } }, ++#ifdef CONFIG_HIGHMEM ++ [N_HIGH_MEMORY] = { { [0] = 1UL } }, ++#endif ++ [N_CPU] = { { [0] = 1UL } }, ++#endif /* NUMA */ ++}; ++EXPORT_SYMBOL(node_states); ++ + unsigned long totalram_pages __read_mostly; + unsigned long totalreserve_pages __read_mostly; + long nr_swap_pages; + int percpu_pagelist_fraction; + +@@ -2070,18 +2078,39 @@ static void build_zonelist_cache(pg_data + pgdat->node_zonelists[i].zlcache_ptr = NULL; + } + + #endif /* CONFIG_NUMA */ + ++/* Any regular memory on that node ? */ ++static void check_for_regular_memory(pg_data_t *pgdat) ++{ ++#ifdef CONFIG_HIGHMEM ++ enum zone_type zone_type; ++ ++ for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) { ++ struct zone *zone = &pgdat->node_zones[zone_type]; ++ if (zone->present_pages) ++ node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY); ++ } ++#endif ++} ++ + /* return values int ....just for stop_machine_run() */ + static int __build_all_zonelists(void *dummy) + { + int nid; + + for_each_online_node(nid) { +- build_zonelists(NODE_DATA(nid)); +- build_zonelist_cache(NODE_DATA(nid)); ++ pg_data_t *pgdat = NODE_DATA(nid); ++ ++ build_zonelists(pgdat); ++ build_zonelist_cache(pgdat); ++ ++ /* Any memory on that node */ ++ if (pgdat->node_present_pages) ++ node_set_state(nid, N_HIGH_MEMORY); ++ check_for_regular_memory(pgdat); + } + return 0; + } + + void build_all_zonelists(void) +@@ -2322,18 +2351,21 @@ static struct per_cpu_pageset boot_pages + * per cpu pageset array in struct zone. + */ + static int __cpuinit process_zones(int cpu) + { + struct zone *zone, *dzone; ++ int node = cpu_to_node(cpu); ++ ++ node_set_state(node, N_CPU); /* this node has a cpu */ + + for_each_zone(zone) { + + if (!populated_zone(zone)) + continue; + + zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset), +- GFP_KERNEL, cpu_to_node(cpu)); ++ GFP_KERNEL, node); + if (!zone_pcp(zone, cpu)) + goto bad; + + setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone)); + +--- linux-2.6.23.orig/mm/vmscan.c ++++ linux-2.6.23/mm/vmscan.c +@@ -1845,11 +1845,10 @@ static int __zone_reclaim(struct zone *z + return nr_reclaimed >= nr_pages; + } + + int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order) + { +- cpumask_t mask; + int node_id; + + /* + * Zone reclaim reclaims unmapped file backed pages and + * slab pages if we are over the defined limits. +@@ -1882,11 +1881,10 @@ int zone_reclaim(struct zone *zone, gfp_ + * have associated processors. This will favor the local processor + * over remote processors and spread off node memory allocations + * as wide as possible. + */ + node_id = zone_to_nid(zone); +- mask = node_to_cpumask(node_id); +- if (!cpus_empty(mask) && node_id != numa_node_id()) ++ if (node_state(node_id, N_CPU) && node_id != numa_node_id()) + return 0; + return __zone_reclaim(zone, gfp_mask, order); + } + #endif +--- linux-2.6.23.orig/net/unix/af_unix.c ++++ linux-2.6.23/net/unix/af_unix.c +@@ -331,11 +331,11 @@ static inline int unix_writable(struct s + static void unix_write_space(struct sock *sk) + { + read_lock(&sk->sk_callback_lock); + if (unix_writable(sk)) { + if (sk->sk_sleep && waitqueue_active(sk->sk_sleep)) +- wake_up_interruptible(sk->sk_sleep); ++ wake_up_interruptible_sync(sk->sk_sleep); + sk_wake_async(sk, 2, POLL_OUT); + } + read_unlock(&sk->sk_callback_lock); + } + +@@ -1640,11 +1640,11 @@ static int unix_dgram_recvmsg(struct kio + err = 0; + unix_state_unlock(sk); + goto out_unlock; + } + +- wake_up_interruptible(&u->peer_wait); ++ wake_up_interruptible_sync(&u->peer_wait); + + if (msg->msg_name) + unix_copy_addr(msg, skb->sk); + + if (size > skb->len) |