diff options
Diffstat (limited to 'packages/linux/linux-2.6.24/mpc8313e-rdb/mpc831x-nand.patch')
-rw-r--r-- | packages/linux/linux-2.6.24/mpc8313e-rdb/mpc831x-nand.patch | 1807 |
1 files changed, 1807 insertions, 0 deletions
diff --git a/packages/linux/linux-2.6.24/mpc8313e-rdb/mpc831x-nand.patch b/packages/linux/linux-2.6.24/mpc8313e-rdb/mpc831x-nand.patch new file mode 100644 index 0000000000..7c6502d232 --- /dev/null +++ b/packages/linux/linux-2.6.24/mpc8313e-rdb/mpc831x-nand.patch @@ -0,0 +1,1807 @@ +diff -urN linux-2.6.24.orig/arch/powerpc/boot/dts/mpc8313erdb.dts linux-2.6.24/arch/powerpc/boot/dts/mpc8313erdb.dts +--- linux-2.6.24.orig/arch/powerpc/boot/dts/mpc8313erdb.dts 2008-01-24 23:58:37.000000000 +0100 ++++ linux-2.6.24/arch/powerpc/boot/dts/mpc8313erdb.dts 2008-02-18 16:39:43.000000000 +0100 +@@ -36,6 +36,12 @@ + device_type = "memory"; + reg = <00000000 08000000>; // 128MB at 0 + }; ++ ++ nand0 { ++ device_type = "nand"; ++ compatible = "fsl-nand"; ++ reg = <e2800000 00000200>; ++ }; + + soc8313@e0000000 { + #address-cells = <1>; +@@ -177,6 +183,16 @@ + reg = <700 100>; + device_type = "ipic"; + }; ++ ++ elbc@5000 { ++ device_type = "elbc"; ++ compatible = "fsl-elbc"; ++ reg = <5000 1000>; ++ interrupts = <4d 8>; ++ interrupt-parent = < &ipic >; ++ allow-direct-device-sleep; ++ }; ++ + }; + + pci@e0008500 { +diff -urN linux-2.6.24.orig/arch/powerpc/sysdev/fsl_soc.c linux-2.6.24/arch/powerpc/sysdev/fsl_soc.c +--- linux-2.6.24.orig/arch/powerpc/sysdev/fsl_soc.c 2008-01-24 23:58:37.000000000 +0100 ++++ linux-2.6.24/arch/powerpc/sysdev/fsl_soc.c 2008-02-18 17:07:57.000000000 +0100 +@@ -6,6 +6,12 @@ + * 2006 (c) MontaVista Software, Inc. + * Vitaly Bordug <vbordug@ru.mvista.com> + * ++ * Change log: ++ * Copyright (C) 2006 Freescale Semiconductor, Inc. ++ * 2006: Lo Wilson (r43300@freescale.com) ++ * Added support for Enhanced Local Bus Controller ++ * Added support for USB UTMI mode on-chip PHY ++ * + * This program is free software; you can redistribute it and/or modify it + * under the terms of the GNU General Public License as published by the + * Free Software Foundation; either version 2 of the License, or (at your +@@ -28,6 +34,8 @@ + #include <linux/fsl_devices.h> + #include <linux/fs_enet_pd.h> + #include <linux/fs_uart_pd.h> ++#include <linux/mtd/nand.h> ++#include <linux/mtd/fsl_elbc.h> + + #include <asm/system.h> + #include <asm/atomic.h> +@@ -671,6 +679,75 @@ + + arch_initcall(fsl_usb_of_init); + ++static int __init fsl_elbc_of_init(void) ++{ ++ struct device_node *np; ++ unsigned int i; ++ struct platform_device *elbc_dev = NULL; ++ struct platform_device *nand_dev = NULL; ++ int ret; ++ ++ /* find and register the enhanced local bus controller */ ++ for (np = NULL, i = 0; ++ (np = of_find_compatible_node(np, "elbc", "fsl-elbc")) != NULL; ++ i++) { ++ struct resource r[2]; ++ ++ memset(&r, 0, sizeof(r)); ++ ++ ret = of_address_to_resource(np, 0, &r[0]); ++ if (ret) ++ goto err; ++ ++ r[1].start = r[1].end = irq_of_parse_and_map(np, 0); ++ r[1].flags = IORESOURCE_IRQ; ++ ++ elbc_dev = ++ platform_device_register_simple("fsl-elbc", i, r, 2); ++ if (IS_ERR(elbc_dev)) { ++ ret = PTR_ERR(elbc_dev); ++ goto err; ++ } ++ } ++ ++ /* find and register NAND memories if the eLBC was found */ ++ for (np = NULL, i = 0; ++ elbc_dev && ++ (np = of_find_compatible_node(np, "nand", "fsl-nand")) != NULL; ++ i++) { ++ struct resource r; ++ struct platform_fsl_nand_chip chip_data; ++ ++ memset(&r, 0, sizeof(r)); ++ memset(&chip_data, 0, sizeof(chip_data)); ++ ++ ret = of_address_to_resource(np, 0, &r); ++ if (ret) ++ goto err; ++ ++ nand_dev = ++ platform_device_register_simple("fsl-nand", i, &r, 1); ++ if (IS_ERR(nand_dev)) { ++ ret = PTR_ERR(nand_dev); ++ goto err; ++ } ++ ++ chip_data.name = of_get_property(np, "name", NULL); ++ chip_data.partitions_str = of_get_property(np, "partitions", NULL); ++ ++ ret = platform_device_add_data(nand_dev, &chip_data, ++ sizeof(struct platform_fsl_nand_chip)); ++ if (ret) ++ goto err; ++ } ++ return 0; ++ ++err: ++ return ret; ++} ++ ++arch_initcall(fsl_elbc_of_init); ++ + #ifndef CONFIG_PPC_CPM_NEW_BINDING + #ifdef CONFIG_CPM2 + +diff -urN linux-2.6.24.orig/drivers/mtd/nand/fsl_elbc.c linux-2.6.24/drivers/mtd/nand/fsl_elbc.c +--- linux-2.6.24.orig/drivers/mtd/nand/fsl_elbc.c 1970-01-01 01:00:00.000000000 +0100 ++++ linux-2.6.24/drivers/mtd/nand/fsl_elbc.c 2008-02-18 17:08:08.000000000 +0100 +@@ -0,0 +1,1324 @@ ++/* linux/drivers/mtd/nand/fsl_elbc.c ++ * ++ * Copyright (C) 2006 Freescale Semiconductor, Inc. ++ * ++ * Freescale Enhanced Local Bus Controller NAND driver ++ * ++ * Author: Nick Spence <Nick.Spence@freescale.com> ++ * Maintainer: Tony Li <Tony.Li@freescale.com> ++ * ++ * Changelog: ++ * 2006-12 Tony Li <Tony.Li@freescale.com> ++ * Adopt to MPC8313ERDB board ++ * ++ * This program is free software; you can redistribute it and/or modify ++ * it under the terms of the GNU General Public License as published by ++ * the Free Software Foundation; either version 2 of the License, or ++ * (at your option) any later version. ++ * ++ * This program is distributed in the hope that it will be useful, ++ * but WITHOUT ANY WARRANTY; without even the implied warranty of ++ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ++ * GNU General Public License for more details. ++ * ++ * You should have received a copy of the GNU General Public License ++ * along with this program; if not, write to the Free Software ++ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA ++*/ ++ ++//#ifdef CONFIG_MTD_NAND_DEBUG ++//#define DEBUG ++//#endif ++//#define DEBUG ++ ++#include <linux/module.h> ++#include <linux/types.h> ++#include <linux/init.h> ++#include <linux/kernel.h> ++#include <linux/string.h> ++#include <linux/ioport.h> ++#include <linux/platform_device.h> ++#include <linux/delay.h> ++#include <linux/err.h> ++#include <linux/slab.h> ++#include <linux/interrupt.h> ++#include <linux/device.h> ++#include <linux/fsl_devices.h> ++ ++#include <linux/mtd/mtd.h> ++#include <linux/mtd/nand.h> ++#include <linux/mtd/nand_ecc.h> ++#include <linux/mtd/partitions.h> ++ ++#include <asm/io.h> ++#include <linux/mtd/fsl_elbc.h> ++ ++#define PFX "fsl-elbc: " ++ ++#undef CFG_FCM_DEBUG ++#define CFG_FCM_DEBUG_LVL 3 ++#ifdef CFG_FCM_DEBUG ++static int fcm_debug_level = CFG_FCM_DEBUG_LVL; ++#define FCM_DEBUG(n, args...) \ ++ do { \ ++ if (n <= fcm_debug_level) \ ++ printk(args); \ ++ } while(0) ++#else /* CONFIG_FCM_DEBUG */ ++#define FCM_DEBUG(n, args...) do { } while(0) ++#endif ++ ++#define FCM_SIZE (8 * 1024) ++ ++#define MAX_BANKS (8) ++ ++/* use interrupt instead of busy waiting TODO */ ++#define FCM_USE_INTERRUPT ++ ++#define MIN(x, y) ((x < y) ? x : y) ++ ++#define ERR_BYTE 0xFF /* Value returned for read bytes when read failed */ ++ ++#define FCM_TIMEOUT_MSECS 100 /* Maximum number of mSecs to wait for FCM */ ++ ++ ++ ++struct fsl_elbc_ctrl; ++ ++/* mtd information per set */ ++ ++struct fsl_elbc_mtd { ++ struct mtd_info mtd; ++ struct nand_chip chip; ++ struct platform_fsl_nand_chip pl_chip; ++ struct fsl_elbc_ctrl *ctrl; ++ ++ struct device *device; ++// int nr_chips; /* Number of chips in set */ ++// int nr_partitions; /* Number of partitions or 0 */ ++ char *name; /* Name of set (optional) */ ++ int *nr_map; /* Physical chip num (option)*/ ++// struct mtd_partition *partitions; /* MTD partition list (option*/ ++// struct nand_ecclayout *ecclayout; ++ unsigned int options; ++ struct resource *area; ++ int bank; /* Chip select bank number */ ++ unsigned int pbase; /* Chip select base physical address */ ++ unsigned int vbase; /* Chip select base virtual address */ ++ int pgs; /* NAND page size (0=512, 1=2048) */ ++ unsigned int fmr; /* FCM Flash Mode Register value */ ++}; ++ ++/* overview of the fsl elbc controller */ ++ ++struct fsl_elbc_ctrl { ++ struct nand_hw_control controller; ++ struct fsl_elbc_mtd *nmtd[MAX_BANKS]; ++ ++ /* device info */ ++ atomic_t childs_active; ++ struct device *device; ++ struct resource *area; ++ lbus83xx_t *regs; ++ int irq; ++ wait_queue_head_t irq_wait; ++ unsigned int irq_status; /* status read from LTESR by irq handler */ ++ u_char *addr; /* Address of assigned FCM buffer */ ++ unsigned int page; /* Last page written to / read from */ ++ unsigned int read_bytes; /* Number of bytes read during command */ ++ unsigned int index; /* Pointer to next byte to 'read' */ ++ unsigned int status; /* status read from LTESR after last op */ ++ int oobbuf; /* Pointer to OOB block */ ++ unsigned int mdr; /* UPM/FCM Data Register value */ ++ unsigned int use_mdr; /* Non zero if the MDR is to be set */ ++}; ++ ++struct fsl_elbc_ctrl elbc_ctrl; ++ ++/* These map to the positions used by the FCM hardware ECC generator */ ++ ++/* Small Page FLASH with FMR[ECCM] = 0 */ ++static struct nand_ecclayout fsl_elbc_oob_sp_eccm0 = { /* TODO */ ++//TODO .useecc = MTD_NANDECC_AUTOPL_USR, /* MTD_NANDECC_PLACEONLY, */ ++ .eccbytes = 3, ++ .eccpos = {6, 7, 8}, ++ .oobfree = { {0, 5}, {9, 7} } ++}; ++ ++/* Small Page FLASH with FMR[ECCM] = 1 */ ++static struct nand_ecclayout fsl_elbc_oob_sp_eccm1 = { /* TODO */ ++//TODO .useecc = MTD_NANDECC_AUTOPL_USR, /* MTD_NANDECC_PLACEONLY, */ ++ .eccbytes = 3, ++ .eccpos = {8, 9, 10}, ++ .oobfree = { {0, 5}, {6, 2}, {11, 5} } ++}; ++ ++/* Large Page FLASH with FMR[ECCM] = 0 */ ++static struct nand_ecclayout fsl_elbc_oob_lp_eccm0 = { ++//TODO .useecc = MTD_NANDECC_AUTOPL_USR, /* MTD_NANDECC_PLACEONLY, */ ++ .eccbytes = 12, ++ .eccpos = {6, 7, 8, 22, 23, 24, 38, 39, 40, 54, 55, 56}, ++ .oobfree = { {1, 5}, {9, 13}, {25, 13}, {41, 13}, {57, 7} } ++}; ++ ++/* Large Page FLASH with FMR[ECCM] = 1 */ ++static struct nand_ecclayout fsl_elbc_oob_lp_eccm1 = { ++//TODO .useecc = MTD_NANDECC_AUTOPL_USR, /* MTD_NANDECC_PLACEONLY, */ ++ .eccbytes = 12, ++ .eccpos = {8, 9, 10, 24, 25, 26, 40, 41, 42, 56, 57, 58}, ++ .oobfree = { {1, 7}, {11, 13}, {27, 13}, {43, 13}, {59, 5} } ++}; ++ ++/*=================================*/ ++ ++/* ++ * Set up the FCM hardware block and page address fields, and the fcm ++ * structure addr field to point to the correct FCM buffer in memory ++ */ ++static void set_addr(struct mtd_info *mtd, int column, int page_addr, int oob) ++{ ++ struct nand_chip *chip = mtd->priv; ++ struct fsl_elbc_mtd *nmtd = chip->priv; ++ struct fsl_elbc_ctrl *ctrl = nmtd->ctrl; ++ volatile lbus83xx_t *lbc = ctrl->regs; ++ int buf_num; ++ ++ ctrl->page = page_addr; ++ ++ lbc->fbar = page_addr >> (chip->phys_erase_shift - chip->page_shift); ++ if (nmtd->pgs) { ++ lbc->fpar = ((page_addr << FPAR_LP_PI_SHIFT) & FPAR_LP_PI) | ++ ( oob ? FPAR_LP_MS : 0) | ++ column; ++ buf_num = (page_addr & 1) << 2; ++ } else { ++ lbc->fpar = ((page_addr << FPAR_SP_PI_SHIFT) & FPAR_SP_PI) | ++ ( oob ? FPAR_SP_MS : 0) | ++ column; ++ buf_num = page_addr & 7; ++ } ++ ctrl->addr = (unsigned char*)(nmtd->vbase + (buf_num * 1024)); ++ ++ /* for OOB data point to the second half of the buffer */ ++ if (oob) { ++ ctrl->addr += (nmtd->pgs ? 2048 : 512); ++ } ++ FCM_DEBUG(2,"set_addr: bank=%d, ctrl->addr=0x%p (0x%08x)\n", buf_num, ctrl->addr, nmtd->vbase); ++} ++ ++/* ++ * execute FCM command and wait for it to complete ++ */ ++static int fsl_elbc_run_command(struct mtd_info *mtd) ++{ ++ struct nand_chip *chip = mtd->priv; ++ struct fsl_elbc_mtd *nmtd = chip->priv; ++ struct fsl_elbc_ctrl *ctrl = nmtd->ctrl; ++ volatile lbus83xx_t *lbc = ctrl->regs; ++ /* Setup the FMR[OP] to execute without write protection */ ++ lbc->fmr = nmtd->fmr | 3; ++ if (ctrl->use_mdr) ++ lbc->mdr = ctrl->mdr; ++ ++ FCM_DEBUG(5,"fsl_elbc_run_command: fmr= %08X fir= %08X fcr= %08X\n", ++ lbc->fmr, lbc->fir, lbc->fcr); ++ FCM_DEBUG(5,"fsl_elbc_run_command: fbar=%08X fpar=%08X fbcr=%08X bank=%d\n", ++ lbc->fbar, lbc->fpar, lbc->fbcr, nmtd->bank); ++ ++ /* clear event registers */ ++ lbc->lteatr = 0; ++ lbc->ltesr |= (LTESR_FCT | LTESR_PAR | LTESR_CC); ++ ++ /* execute special operation */ ++ lbc->lsor = nmtd->bank; ++ ++ /* wait for FCM complete flag or timeout */ ++/* TODO */ ++#ifdef FCM_USE_INTERRUPT ++ ctrl->status = ctrl->irq_status = 0; ++ wait_event_timeout(ctrl->irq_wait, ctrl->irq_status, FCM_TIMEOUT_MSECS * HZ/1000); ++ ctrl->status = ctrl->irq_status; ++#else ++ { ++ unsigned long timeout; ++ unsigned long now; ++ now = jiffies_to_msecs(jiffies); ++ timeout = now + FCM_TIMEOUT_MSECS; ++ while (time_before(now, timeout)) { ++ ctrl->status = lbc->ltesr & (LTESR_FCT | LTESR_PAR | LTESR_CC); ++ if (ctrl->status) ++ break; ++ now = jiffies_to_msecs(jiffies); ++ } ++ } ++#endif ++ ++ /* store mdr value in case it was needed */ ++ if (ctrl->use_mdr) ++ ctrl->mdr = lbc->mdr; ++ ++ ctrl->use_mdr = 0; ++ ++ FCM_DEBUG(5,"fsl_elbc_run_command: stat=%08X mdr= %08X fmr= %08X\n", ++ ctrl->status, ctrl->mdr, lbc->fmr); ++ ++ /* returns 0 on success otherwise non-zero) */ ++ return (ctrl->status == LTESR_CC ? 0 : EFAULT); ++} ++ ++/* cmdfunc send commands to the FCM */ ++static void fsl_elbc_cmdfunc(struct mtd_info *mtd, unsigned command, ++ int column, int page_addr) ++{ ++ struct nand_chip *chip = mtd->priv; ++ struct fsl_elbc_mtd *nmtd = chip->priv; ++ struct fsl_elbc_ctrl *ctrl = nmtd->ctrl; ++ volatile lbus83xx_t *lbc = ctrl->regs; ++ ++ ctrl->use_mdr = 0; ++ ++ /* clear the read buffer */ ++ ctrl->read_bytes = 0; ++ if (command != NAND_CMD_PAGEPROG) { ++ ctrl->index = 0; ++ ctrl->oobbuf = -1; ++ } ++ ++ switch (command) { ++ /* READ0 and READ1 read the entire buffer to use hardware ECC */ ++ case NAND_CMD_READ1: ++ FCM_DEBUG(2,"fsl_elbc_cmdfunc: NAND_CMD_READ1, page_addr:" ++ " 0x%x, column: 0x%x.\n", page_addr, column); ++ ctrl->index = column + 256; ++ goto read0; ++ case NAND_CMD_READ0: ++ FCM_DEBUG(2,"fsl_elbc_cmdfunc: NAND_CMD_READ0, page_addr:" ++ " 0x%x, column: 0x%x.\n", page_addr, column); ++ ctrl->index = column; ++read0: ++ if (nmtd->pgs) { ++ lbc->fir = (FIR_OP_CW0 << FIR_OP0_SHIFT) | ++ (FIR_OP_CA << FIR_OP1_SHIFT) | ++ (FIR_OP_PA << FIR_OP2_SHIFT) | ++ (FIR_OP_CW1 << FIR_OP3_SHIFT) | ++ (FIR_OP_RBW << FIR_OP4_SHIFT); ++ } else { ++ lbc->fir = (FIR_OP_CW0 << FIR_OP0_SHIFT) | ++ (FIR_OP_CA << FIR_OP1_SHIFT) | ++ (FIR_OP_PA << FIR_OP2_SHIFT) | ++ (FIR_OP_RBW << FIR_OP3_SHIFT); ++ } ++ lbc->fcr = (NAND_CMD_READ0 << FCR_CMD0_SHIFT) | ++ (NAND_CMD_READSTART << FCR_CMD1_SHIFT); ++ lbc->fbcr = 0; /* read entire page to enable ECC */ ++ set_addr(mtd, 0, page_addr, 0); ++ ctrl->read_bytes = mtd->writesize + mtd->oobsize; ++ goto write_cmd2; ++ /* READOOB read only the OOB becasue no ECC is performed */ ++ case NAND_CMD_READOOB: ++ FCM_DEBUG(2,"fsl_elbc_cmdfunc: NAND_CMD_READOOB, page_addr:" ++ " 0x%x, column: 0x%x.\n", page_addr, column); ++ if (nmtd->pgs) { ++ lbc->fir = (FIR_OP_CW0 << FIR_OP0_SHIFT) | ++ (FIR_OP_CA << FIR_OP1_SHIFT) | ++ (FIR_OP_PA << FIR_OP2_SHIFT) | ++ (FIR_OP_CW1 << FIR_OP3_SHIFT) | ++ (FIR_OP_RBW << FIR_OP4_SHIFT); ++ lbc->fcr = (NAND_CMD_READ0 << FCR_CMD0_SHIFT) | ++ (NAND_CMD_READSTART << FCR_CMD1_SHIFT); ++ } else { ++ lbc->fir = (FIR_OP_CW0 << FIR_OP0_SHIFT) | ++ (FIR_OP_CA << FIR_OP1_SHIFT) | ++ (FIR_OP_PA << FIR_OP2_SHIFT) | ++ (FIR_OP_RBW << FIR_OP3_SHIFT); ++ lbc->fcr = (NAND_CMD_READOOB << FCR_CMD0_SHIFT); ++ } ++ lbc->fbcr = mtd->oobsize - column; ++ set_addr(mtd, column, page_addr, 1); ++ ctrl->read_bytes = mtd->oobsize; ++ ctrl->index = column; ++ goto write_cmd2; ++ /* READID must read all 5 possible bytes while CEB is active */ ++ case NAND_CMD_READID: ++ FCM_DEBUG(2,"fsl_elbc_cmdfunc: NAND_CMD_READID.\n"); ++ lbc->fir = (FIR_OP_CW0 << FIR_OP0_SHIFT) | ++ (FIR_OP_UA << FIR_OP1_SHIFT) | ++ (FIR_OP_RBW << FIR_OP2_SHIFT); ++ lbc->fcr = (NAND_CMD_READID << FCR_CMD0_SHIFT); ++ lbc->fbcr = 5; /* 5 bytes for manuf, device and exts */ ++ ctrl->use_mdr = 1; ++ ctrl->mdr = 0; ++ goto write_cmd0; ++ /* ERASE1 stores the block and page address */ ++ case NAND_CMD_ERASE1: ++ FCM_DEBUG(2,"fsl_elbc_cmdfunc: NAND_CMD_ERASE1, page_addr:" ++ " 0x%x.\n", page_addr); ++ set_addr(mtd, 0, page_addr, 0); ++ goto end; ++ /* ERASE2 uses the block and page address from ERASE1 */ ++ case NAND_CMD_ERASE2: ++ FCM_DEBUG(2,"fsl_elbc_cmdfunc: NAND_CMD_ERASE2.\n"); ++ lbc->fir = (FIR_OP_CW0 << FIR_OP0_SHIFT) | ++ (FIR_OP_PA << FIR_OP1_SHIFT) | ++ (FIR_OP_CM1 << FIR_OP2_SHIFT); ++ lbc->fcr = (NAND_CMD_ERASE1 << FCR_CMD0_SHIFT) | ++ (NAND_CMD_ERASE2 << FCR_CMD1_SHIFT); ++ lbc->fbcr = 0; ++ goto write_cmd1; ++ /* SEQIN sets up the addr buffer and all registers except the length */ ++ case NAND_CMD_SEQIN: ++ FCM_DEBUG(2,"fsl_elbc_cmdfunc: NAND_CMD_SEQIN/PAGE_PROG, page_addr:" ++ " 0x%x, column: 0x%x.\n", page_addr, column); ++ if (column == 0) { ++ lbc->fbcr = 0; /* write entire page to enable ECC */ ++ } else { ++ lbc->fbcr = 1; /* mark as partial page so no HW ECC */ ++ } ++ if (nmtd->pgs) { ++ /* always use READ0 for large page devices */ ++ lbc->fir = (FIR_OP_CW0 << FIR_OP0_SHIFT) | ++ (FIR_OP_CA << FIR_OP1_SHIFT) | ++ (FIR_OP_PA << FIR_OP2_SHIFT) | ++ (FIR_OP_WB << FIR_OP3_SHIFT) | ++ (FIR_OP_CW1 << FIR_OP4_SHIFT); ++ lbc->fcr = (NAND_CMD_SEQIN << FCR_CMD0_SHIFT) | ++ (NAND_CMD_PAGEPROG << FCR_CMD1_SHIFT); ++ set_addr(mtd, column, page_addr, 0); ++ } else { ++ lbc->fir = (FIR_OP_CW0 << FIR_OP0_SHIFT) | ++ (FIR_OP_CM2 << FIR_OP1_SHIFT) | ++ (FIR_OP_CA << FIR_OP2_SHIFT) | ++ (FIR_OP_PA << FIR_OP3_SHIFT) | ++ (FIR_OP_WB << FIR_OP4_SHIFT) | ++ (FIR_OP_CW1 << FIR_OP5_SHIFT); ++ if (column >= mtd->writesize) { ++ /* OOB area --> READOOB */ ++ column -= mtd->writesize; ++ lbc->fcr = (NAND_CMD_READOOB << FCR_CMD0_SHIFT) ++ | (NAND_CMD_PAGEPROG<< FCR_CMD1_SHIFT) ++ | (NAND_CMD_SEQIN << FCR_CMD2_SHIFT); ++ set_addr(mtd, column, page_addr, 1); ++ } else if (column < 256) { ++ /* First 256 bytes --> READ0 */ ++ lbc->fcr = (NAND_CMD_READ0 << FCR_CMD0_SHIFT) ++ | (NAND_CMD_PAGEPROG<< FCR_CMD1_SHIFT) ++ | (NAND_CMD_SEQIN << FCR_CMD2_SHIFT); ++ set_addr(mtd, column, page_addr, 0); ++ } else { ++ /* Second 256 bytes --> READ1 */ ++ column -= 256; ++ lbc->fcr = (NAND_CMD_READ1 << FCR_CMD0_SHIFT) ++ | (NAND_CMD_PAGEPROG<< FCR_CMD1_SHIFT) ++ | (NAND_CMD_SEQIN << FCR_CMD2_SHIFT); ++ set_addr(mtd, column, page_addr, 0); ++ } ++ } ++ goto end; ++ /* PAGEPROG reuses all of the setup from SEQIN and adds the length */ ++ case NAND_CMD_PAGEPROG: ++ FCM_DEBUG(2,"fsl_elbc_cmdfunc: NAND_CMD_PAGEPROG" ++ " writing %d bytes.\n",ctrl->index); ++ /* if the write did not start at 0 or is not a full page */ ++ /* then set the exact length, otherwise use a full page */ ++ /* write so the HW generates the ECC. */ ++ if (lbc->fbcr || ++ (ctrl->index != (mtd->writesize + mtd->oobsize))) ++ lbc->fbcr = ctrl->index; ++ goto write_cmd2; ++ /* CMD_STATUS must read the status byte while CEB is active */ ++ /* Note - it does not wait for the ready line */ ++ case NAND_CMD_STATUS: ++ FCM_DEBUG(2,"fsl_elbc_cmdfunc: NAND_CMD_STATUS.\n"); ++ lbc->fir = (FIR_OP_CM0 << FIR_OP0_SHIFT) | ++ (FIR_OP_RBW << FIR_OP1_SHIFT); ++ lbc->fcr = (NAND_CMD_STATUS << FCR_CMD0_SHIFT); ++ lbc->fbcr = 1; ++ goto write_cmd0; ++ /* RESET without waiting for the ready line */ ++ case NAND_CMD_RESET: ++ FCM_DEBUG(2,"fsl_elbc_cmdfunc: NAND_CMD_RESET.\n"); ++ lbc->fir = (FIR_OP_CM0 << FIR_OP0_SHIFT); ++ lbc->fcr = (NAND_CMD_RESET << FCR_CMD0_SHIFT); ++ lbc->fbcr = 0; ++ goto write_cmd0; ++ default: ++ printk("fsl_elbc_cmdfunc: error, unsupported command.\n"); ++ goto end; ++ } ++ ++ /* Short cuts fall through to save code */ ++ write_cmd0: ++ set_addr(mtd, 0, 0, 0); ++ write_cmd1: ++ ctrl->read_bytes = lbc->fbcr; ++ write_cmd2: ++ fsl_elbc_run_command(mtd); ++ ++#ifdef CONFIG_MTD_NAND_VERIFY_WRITE ++ /* if we wrote a page then read back the oob to get the ECC */ ++ if ((command == NAND_CMD_PAGEPROG) && ++ (chip->ecc.mode > NAND_ECC_SOFT) && ++ (lbc->fbcr == 0) && ++ (ctrl->oobbuf != 0) && ++ (ctrl->oobbuf != -1)) { ++ int i; ++ uint *oob_config; ++ unsigned char *oob_buf; ++ ++ i = ctrl->page; ++ oob_buf = (unsigned char*) ctrl->oobbuf; ++ oob_config = chip->ecc.layout->eccpos; ++ ++ /* wait for the write to complete and check it passed */ ++ if (!(chip->waitfunc(mtd, chip) & 0x01)) { ++ /* read back the OOB */ ++ fsl_elbc_cmdfunc(mtd, NAND_CMD_READOOB, 0, i); ++ /* if it succeeded then copy the ECC bytes */ ++ if (ctrl->status == LTESR_CC) { ++ for (i=0; i < chip->ecc.layout->eccbytes; i++) { ++ oob_buf[oob_config[i]] = ++ ctrl->addr[oob_config[i]]; ++ } ++ } ++ } ++ } ++#endif ++ ++ end: ++ return; ++} ++ ++/* select chip */ ++ ++static void fsl_elbc_select_chip(struct mtd_info *mtd, int chip) ++{ ++} ++ ++/* fsl_elbc_cmd_ctrl ++ * ++ * Issue command and address cycles to the chip ++*/ ++ ++static void fsl_elbc_cmd_ctrl(struct mtd_info *mtd, int dat, ++ unsigned int ctrl) ++{ ++} ++ ++/* fsl_elbc_dev_ready() ++ * ++ * returns 0 if the nand is busy, 1 if it is ready ++*/ ++ ++static int fsl_elbc_dev_ready(struct mtd_info *mtd) ++{ ++ return 0; ++} ++ ++/* ++ * FCM does not support 16 bit data busses ++ */ ++static u16 fsl_elbc_read_word(struct mtd_info *mtd) ++{ ++ struct nand_chip *chip = mtd->priv; ++ struct fsl_elbc_ctrl *ctrl = (struct fsl_elbc_ctrl *) chip->controller; ++ ++ dev_err(ctrl->device, "fsl_elbc_read_word: UNIMPLEMENTED.\n"); ++ return 0; ++} ++ ++/* ++ * Write buf to the FCM Controller Data Buffer ++ */ ++static void fsl_elbc_write_buf(struct mtd_info *mtd, const u_char *buf, int len) ++{ ++ struct nand_chip *chip = mtd->priv; ++ struct fsl_elbc_mtd *nmtd = chip->priv; ++ struct fsl_elbc_ctrl *ctrl = nmtd->ctrl; ++ ++ FCM_DEBUG(3,"fsl_elbc_write_buf: writing %d bytes starting with 0x%lx" ++ " at %d.\n", len, *((unsigned long*) buf), ctrl->index); ++ ++ /* If armed catch the address of the OOB buffer so that it can be */ ++ /* updated with the real signature after the program comletes */ ++ if (!ctrl->oobbuf) ++ ctrl->oobbuf = (int) buf; ++ ++ /* copy the data into the FCM hardware buffer and update the index */ ++ memcpy(&(ctrl->addr[ctrl->index]), buf, len); ++ ctrl->index += len; ++ return; ++} ++ ++ ++/* ++ * read a byte from either the FCM hardware buffer if it has any data left ++ * otherwise issue a command to read a single byte. ++ */ ++static u_char fsl_elbc_read_byte(struct mtd_info *mtd) ++{ ++ struct nand_chip *chip = mtd->priv; ++ struct fsl_elbc_mtd *nmtd = chip->priv; ++ struct fsl_elbc_ctrl *ctrl = nmtd->ctrl; ++ volatile lbus83xx_t *lbc = ctrl->regs; ++ unsigned char byte; ++ ++ /* If there are still bytes in the FCM then use the next byte */ ++ if(ctrl->index < ctrl->read_bytes) { ++ byte = ctrl->addr[(ctrl->index)++]; ++ FCM_DEBUG(4,"fsl_elbc_read_byte: byte %u (%02X): %d of %d.\n", ++ byte, byte, ctrl->index-1, ctrl->read_bytes); ++ } else { ++ /* otherwise issue a command to read 1 byte */ ++ lbc->fir = (FIR_OP_RSW << FIR_OP0_SHIFT); ++ ctrl->use_mdr = 1; ++ ctrl->read_bytes = 0; ++ ctrl->index = 0; ++ ctrl->read_bytes = 0; ++ ctrl->index = 0; ++ byte = fsl_elbc_run_command(mtd) ? ERR_BYTE : ctrl->mdr & 0xff; ++ FCM_DEBUG(4,"fsl_elbc_read_byte: byte %u (%02X) from bus.\n", ++ byte, byte); ++ } ++ ++ return byte; ++} ++ ++/* ++ * Read from the FCM Controller Data Buffer ++ */ ++static void fsl_elbc_read_buf(struct mtd_info *mtd, u_char* buf, int len) ++{ ++ struct nand_chip *chip = mtd->priv; ++ struct fsl_elbc_mtd *nmtd = chip->priv; ++ struct fsl_elbc_ctrl *ctrl = nmtd->ctrl; ++ int i; ++ int rest; ++ unsigned long old_status; ++ ++ FCM_DEBUG(3,"fsl_elbc_read_buf: reading %d bytes.\n", len); ++ ++ /* see how much is still in the FCM buffer */ ++ i = min((unsigned int)len, (ctrl->read_bytes - ctrl->index)); ++ rest = len - i; ++ len = i; ++ ++ /* copying bytes even if there was an error so that the oob works */ ++ memcpy(buf, &(ctrl->addr[(ctrl->index)]), len); ++ ctrl->index += len; ++ ++ /* If more data is needed then issue another block read */ ++ if (rest) { ++ FCM_DEBUG(3,"fsl_elbc_read_buf: getting %d more bytes.\n", ++ rest); ++ ++ buf += len; ++ ++ /* keep last status in case it was an error */ ++ old_status = ctrl->status; ++ ++ /* read full next page to use HW ECC if enabled */ ++ fsl_elbc_cmdfunc(mtd, NAND_CMD_READ0, 0, ctrl->page + 1); ++ ++ /* preserve the worst status code */ ++ if (ctrl->status == LTESR_CC) ++ ctrl->status = old_status; ++ ++ fsl_elbc_read_buf(mtd, buf, rest); ++ } ++ return; ++} ++ ++ ++/* ++ * Verify buffer against the FCM Controller Data Buffer ++ */ ++static int fsl_elbc_verify_buf(struct mtd_info *mtd, const u_char *buf, int len) ++{ ++ struct nand_chip *chip = mtd->priv; ++ struct fsl_elbc_mtd *nmtd = chip->priv; ++ struct fsl_elbc_ctrl *ctrl = nmtd->ctrl; ++ int i; ++ int rest; ++ ++ FCM_DEBUG(3,"fsl_elbc_verify_buf: checking %d bytes starting with 0x%02lx.\n", ++ len, *((unsigned long*) buf)); ++ ++ /* If last read failed then return error bytes */ ++ if (ctrl->status != LTESR_CC) { ++ return EFAULT; ++ } ++ ++ /* see how much is still in the FCM buffer */ ++ i = min((unsigned int)len, (ctrl->read_bytes - ctrl->index)); ++ rest = len - i; ++ len = i; ++ ++ if (memcmp(buf, &(ctrl->addr[(ctrl->index)]), len)) { ++ return EFAULT; ++ } ++ ++ ctrl->index += len; ++ if (rest) { ++ FCM_DEBUG(3,"fsl_elbc_verify_buf: getting %d more bytes.\n", rest); ++ buf += len; ++ ++ /* read full next page to use HW ECC if enabled */ ++ fsl_elbc_cmdfunc(mtd, NAND_CMD_READ0, 0, ctrl->page + 1); ++ ++ return fsl_elbc_verify_buf(mtd, buf, rest); ++ } ++ return 0; ++} ++ ++/* this function is called after Program and Erase Operations to ++ * check for success or failure */ ++static int fsl_elbc_wait(struct mtd_info *mtd, struct nand_chip *this) ++{ ++ struct nand_chip *chip = mtd->priv; ++ struct fsl_elbc_mtd *nmtd = chip->priv; ++ struct fsl_elbc_ctrl *ctrl = nmtd->ctrl; ++ volatile lbus83xx_t *lbc = ctrl->regs; ++ ++ if (ctrl->status != LTESR_CC) { ++ return(0x1); /* Status Read error */ ++ } ++ ++ /* Use READ_STATUS command, but wait for the device to be ready */ ++ ctrl->use_mdr = 0; ++ ctrl->oobbuf = -1; ++ lbc->fir = (FIR_OP_CW0 << FIR_OP0_SHIFT) | ++ (FIR_OP_RBW << FIR_OP1_SHIFT); ++ lbc->fcr = (NAND_CMD_STATUS << FCR_CMD0_SHIFT); ++ set_addr(mtd, 0, 0, 0); ++ lbc->fbcr = 1; ++ ctrl->index = 0; ++ ctrl->read_bytes = lbc->fbcr; ++ fsl_elbc_run_command(mtd); ++ if (ctrl->status != LTESR_CC) { ++ return(0x1); /* Status Read error */ ++ } ++ return chip->read_byte(mtd); ++} ++ ++/* ECC handling functions */ ++ ++/* ++ * fsl_elbc_enable_hwecc - start ECC generation ++ */ ++static void fsl_elbc_enable_hwecc(struct mtd_info *mtd, int mode) ++{ ++ return; ++} ++ ++/* ++ * fsl_elbc_calculate_ecc - Calculate the ECC bytes ++ * This is done by hardware during the write process, so we use this ++ * to arm the oob buf capture on the next write_buf() call. The ECC bytes ++ * only need to be captured if CONFIG_MTD_NAND_VERIFY_WRITE is defined which ++ * reads back the pages and checks they match the data and oob buffers. ++ */ ++static int fsl_elbc_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code) ++{ ++#ifdef CONFIG_MTD_NAND_VERIFY_WRITE ++ struct nand_chip *chip = mtd->priv; ++ struct fsl_elbc_mtd *nmtd = chip->priv; ++ struct fsl_elbc_ctrl *ctrl = nmtd->ctrl; ++ ++ /* arm capture of oob buf ptr on next write_buf */ ++ ctrl->oobbuf = 0; ++#endif ++ return 0; ++} ++ ++/* ++ * fsl_elbc_correct_data - Detect and correct bit error(s) ++ * The detection and correction is done automatically by the hardware, ++ * if the complete page was read. If the status code is okay then there ++ * was no error, otherwise we return an error code indicating an uncorrectable ++ * error. ++ */ ++static int fsl_elbc_correct_data(struct mtd_info *mtd, u_char *dat, u_char *read_ecc, u_char *calc_ecc) ++{ ++ struct nand_chip *chip = mtd->priv; ++ struct fsl_elbc_mtd *nmtd = chip->priv; ++ struct fsl_elbc_ctrl *ctrl = nmtd->ctrl; ++ ++ /* No errors */ ++ if (ctrl->status == LTESR_CC) ++ return 0; ++ ++ return -1; /* uncorrectable error */ ++} ++ ++/*************************************************************************/ ++/* Chip setup and control functions */ ++/*************************************************************************/ ++ ++/* ++ * Dummy scan_bbt to complete setup of the FMR based on NAND size ++ */ ++static int fsl_elbc_chip_init_tail (struct mtd_info *mtd) ++{ ++ struct nand_chip *chip = mtd->priv; ++ struct fsl_elbc_mtd *nmtd = chip->priv; ++ struct fsl_elbc_ctrl *ctrl = nmtd->ctrl; ++ volatile lbus83xx_t *lbc = ctrl->regs; ++ unsigned int i; ++ unsigned int al; ++ ++ /* calculate FMR Address Length field */ ++ al = 0; ++ for (i = chip->pagemask >> 16; i ; i >>= 8) { ++ al++; ++ } ++ ++ /* add to ECCM mode set in fsl_elbc_init */ ++ nmtd->fmr |= 12 << FMR_CWTO_SHIFT | /* Timeout > 12 mSecs */ ++ al << FMR_AL_SHIFT; ++ ++ FCM_DEBUG(1,"fsl_elbc_init: nand->options = %08X\n", chip->options); ++ FCM_DEBUG(1,"fsl_elbc_init: nand->numchips = %10d\n", chip->numchips); ++ FCM_DEBUG(1,"fsl_elbc_init: nand->chipsize = %10ld\n", chip->chipsize); ++ FCM_DEBUG(1,"fsl_elbc_init: nand->pagemask = %10X\n", chip->pagemask); ++ FCM_DEBUG(1,"fsl_elbc_init: nand->chip_delay = %8d\n", chip->chip_delay); ++ FCM_DEBUG(1,"fsl_elbc_init: nand->badblockpos = %7d\n", chip->badblockpos); ++ FCM_DEBUG(1,"fsl_elbc_init: nand->chip_shift = %8d\n", chip->chip_shift); ++ FCM_DEBUG(1,"fsl_elbc_init: nand->page_shift = %8d\n", chip->page_shift); ++ FCM_DEBUG(1,"fsl_elbc_init: nand->phys_erase_shift = %2d\n", ++ chip->phys_erase_shift); ++ FCM_DEBUG(1,"fsl_elbc_init: nand->ecclayout= %10p\n", chip->ecclayout); ++ FCM_DEBUG(1,"fsl_elbc_init: nand->eccmode = %10d\n", chip->ecc.mode ); ++ FCM_DEBUG(1,"fsl_elbc_init: nand->eccsteps = %10d\n", chip->ecc.steps); ++ FCM_DEBUG(1,"fsl_elbc_init: nand->eccsize = %10d\n", chip->ecc.size ); ++ FCM_DEBUG(1,"fsl_elbc_init: nand->eccbytes = %10d\n", chip->ecc.bytes); ++ FCM_DEBUG(1,"fsl_elbc_init: nand->ecctotal = %10d\n", chip->ecc.total); ++ FCM_DEBUG(1,"fsl_elbc_init: nand->ecclayout= %10p\n", chip->ecc.layout); ++ FCM_DEBUG(1,"fsl_elbc_init: mtd->flags = %08X\n", mtd->flags); ++ FCM_DEBUG(1,"fsl_elbc_init: mtd->size = %10d\n", mtd->size); ++ FCM_DEBUG(1,"fsl_elbc_init: mtd->erasesize = %10d\n", mtd->erasesize); ++ FCM_DEBUG(1,"fsl_elbc_init: mtd->writesize = %10d\n", mtd->writesize); ++ FCM_DEBUG(1,"fsl_elbc_init: mtd->oobsize = %10d\n", mtd->oobsize); ++ FCM_DEBUG(1,"fsl_elbc_init: mtd->ecctype = %10d\n", mtd->ecctype); ++ FCM_DEBUG(1,"fsl_elbc_init: mtd->eccsize = %10d\n", mtd->eccsize); ++ ++ /* adjust Option Register and ECC to match Flash page size */ ++ if (mtd->writesize == 512) ++ lbc->bank[nmtd->bank].or &= ~(OR_FCM_PGS); ++ else if (mtd->writesize == 2048) { ++ lbc->bank[nmtd->bank].or |= OR_FCM_PGS; ++ /* adjust ecc setup if needed */ ++ if ( (lbc->bank[nmtd->bank].br & BR_DECC) == BR_DECC_CHK_GEN) { ++ chip->ecc.size = 2048; ++ chip->ecc.steps = 1; ++//TODO chip->ecc.bytes += 9; ++//TODO chip->ecc.total += 9; ++ chip->ecc.layout = (nmtd->fmr & FMR_ECCM) ? ++ &fsl_elbc_oob_lp_eccm1 : &fsl_elbc_oob_lp_eccm0; ++ mtd->ecclayout = chip->ecc.layout; ++ } ++ } ++ else { ++ printk("fsl_elbc_init: page size %d is not supported\n", ++ mtd->writesize); ++ return -1; ++ } ++ nmtd->pgs = (lbc->bank[nmtd->bank].or>>OR_FCM_PGS_SHIFT) & 1; ++ ++ /* fix up the oobavail size in case the layout was changed */ ++ chip->ecc.layout->oobavail = 0; ++ for (i = 0; chip->ecc.layout->oobfree[i].length; i++) ++ chip->ecc.layout->oobavail += ++ chip->ecc.layout->oobfree[i].length; ++ ++ /* return to the default bbt_scan_routine */ ++ chip->scan_bbt = nand_default_bbt; ++ ++ /* restore complete options including the real SKIP_BBTSCAN setting */ ++ chip->options = nmtd->options; ++ ++ /* Check, if we should skip the bad block table scan */ ++ if (chip->options & NAND_SKIP_BBTSCAN) ++ return 0; ++ ++ return chip->scan_bbt(mtd); ++} ++/* fsl_elbc_chip_init ++ * ++ * init a single instance of an chip ++*/ ++ ++static int fsl_elbc_chip_init(struct fsl_elbc_mtd *nmtd) ++{ ++ struct fsl_elbc_ctrl *ctrl = nmtd->ctrl; ++ volatile lbus83xx_t *lbc = ctrl->regs; ++ struct nand_chip *chip = &nmtd->chip; ++ ++ FCM_DEBUG(1,"eLBC Set Information for bank %d\n", nmtd->bank); ++ FCM_DEBUG(1," name = %s\n", ++ nmtd->pl_chip.name ? nmtd->pl_chip.name : "(NULL)"); ++ FCM_DEBUG(1," nr_chips = %d\n", nmtd->pl_chip.nr_chips); ++ FCM_DEBUG(1," partitions = %s\n", ++ nmtd->pl_chip.partitions_str ? ++ nmtd->pl_chip.partitions_str : "(NULL)"); ++ dev_dbg(nmtd->device,"eLBC Set Information for bank %d\n", nmtd->bank); ++ dev_dbg(nmtd->device," name = %s\n", ++ nmtd->name ? nmtd->name : "(NULL)"); ++ dev_dbg(nmtd->device," nr_chips = %d\n", nmtd->pl_chip.nr_chips); ++ dev_dbg(nmtd->device," partitions = %s\n", ++ nmtd->pl_chip.partitions_str ? ++ nmtd->pl_chip.partitions_str : "(NULL)"); ++ ++ /* Fill in fsl_elbc_mtd structure */ ++ nmtd->name = (char *) nmtd->pl_chip.name; ++ nmtd->mtd.name = nmtd->name; ++ nmtd->mtd.priv = chip; ++ nmtd->mtd.owner = THIS_MODULE; ++ nmtd->pgs = (lbc->bank[nmtd->bank].or>>OR_FCM_PGS_SHIFT) & 1; ++// TODO nmtd->fmr = FMR_ECCM; /* rest filled in later */ ++ nmtd->fmr = 0; /* rest filled in later */ ++ ++ /* fill in nand_chip structure */ ++ /* set physical base address from the Base Register */ ++ chip->IO_ADDR_W = (void __iomem*) (nmtd->pbase); ++ chip->IO_ADDR_R = chip->IO_ADDR_W; ++ ++ /* set up function call table */ ++// chip->hwcontrol = fsl_elbc_hwcontrol; ++ chip->read_byte = fsl_elbc_read_byte; ++ chip->read_word = fsl_elbc_read_word; ++ chip->write_buf = fsl_elbc_write_buf; ++ chip->read_buf = fsl_elbc_read_buf; ++ chip->verify_buf = fsl_elbc_verify_buf; ++ chip->select_chip = fsl_elbc_select_chip; ++// TODO chip->block_bad ++// TODO chip->block_markbad ++ chip->cmd_ctrl = fsl_elbc_cmd_ctrl; ++ chip->dev_ready = fsl_elbc_dev_ready; ++ chip->cmdfunc = fsl_elbc_cmdfunc; ++ chip->waitfunc = fsl_elbc_wait; ++ chip->scan_bbt = fsl_elbc_chip_init_tail; ++// TODO chip->errstat ++ ++ /* set up nand options */ ++ chip->options = NAND_NO_READRDY; ++ chip->chip_delay = 1; ++ ++ chip->controller = &ctrl->controller; ++ chip->priv = nmtd; ++ ++ /* If CS Base Register selects full hardware ECC then use it */ ++ if ( (lbc->bank[nmtd->bank].br & BR_DECC) == BR_DECC_CHK_GEN) { ++ chip->ecc.mode = NAND_ECC_HW; ++ chip->ecc.calculate = fsl_elbc_calculate_ecc; ++ chip->ecc.correct = fsl_elbc_correct_data; ++ chip->ecc.hwctl = fsl_elbc_enable_hwecc; ++ /* put in small page settings and adjust later if needed */ ++ chip->ecc.layout = (nmtd->fmr & FMR_ECCM) ? ++ &fsl_elbc_oob_sp_eccm1 : &fsl_elbc_oob_sp_eccm0; ++ chip->ecc.size = 512; ++ chip->ecc.bytes = 3; ++ } else { ++ /* otherwise fall back to default software ECC */ ++ chip->ecc.mode = NAND_ECC_SOFT; ++ } ++ ++ /* force BBT scan to get to custom scan_bbt for final settings */ ++ nmtd->options = chip->options; ++ chip-> options &= ~(NAND_SKIP_BBTSCAN); ++ ++ return 0; ++} ++ ++ ++ ++static int fsl_elbc_chip_remove(struct platform_device *pdev) ++{ ++ struct fsl_elbc_mtd *nmtd = platform_get_drvdata(pdev); ++ struct fsl_elbc_ctrl *ctrl = nmtd->ctrl; ++ ++ nand_release(&nmtd->mtd); ++ ++ if (nmtd->vbase != 0) { ++ iounmap((void __iomem*)nmtd->vbase); ++ nmtd->vbase = 0; ++ } ++ ++/* TODO ++ if (nmtd->area != NULL) { ++ release_resource(nmtd->area); ++ kfree(nmtd->area); ++ nmtd->area = NULL; ++ } ++*/ ++ ++ platform_set_drvdata(pdev, NULL); ++ ++ ctrl->nmtd[nmtd->bank] = NULL; ++ atomic_dec(&ctrl->childs_active); ++ ++ kfree(nmtd); ++ ++ return 0; ++} ++ ++#ifdef CONFIG_MTD_PARTITIONS ++const char *part_probes[] = { "cmdlinepart", NULL }; ++#endif ++ ++static int fsl_elbc_chip_probe(struct platform_device *pdev) ++{ ++ struct platform_fsl_nand_chip *pnc = pdev->dev.platform_data; ++ struct fsl_elbc_ctrl *ctrl = &elbc_ctrl; ++ volatile lbus83xx_t *lbc = ctrl->regs; ++ struct fsl_elbc_mtd *nmtd; ++ struct resource *res; ++ int err = 0; ++ int size; ++ int bank; ++ int mtd_parts_nb = 0; ++ struct mtd_partition *mtd_parts = 0; ++ ++ dev_dbg(&pdev->dev, "fsl_elbc_chip_probe(%p)\n", pdev); ++ ++ /* check that the platform data structure was supplied */ ++ if (pnc == NULL) { ++ dev_err(&pdev->dev,"Device needs a platform data structure\n"); ++ return -ENOENT; ++ } ++ ++ /* check that the device has a name */ ++ if (pnc->name == NULL) { ++ dev_err(&pdev->dev,"Device requires a name\n"); ++ return -ENOENT; ++ } ++ /* get, allocate and map the memory resource */ ++ res = platform_get_resource(pdev, IORESOURCE_MEM, 0); ++ if (res == NULL) { ++ dev_err(&pdev->dev,"failed to get memory region resource\n"); ++ return -ENOENT; ++ } ++ /* find which chip select it is connected to */ ++ for (bank=0; bank < MAX_BANKS; bank++) { ++ if ( (lbc->bank[bank].br & BR_V) && ++ ((lbc->bank[bank].br & BR_MSEL) == BR_MS_FCM) && ++ ((lbc->bank[bank].br & lbc->bank[bank].or & BR_BA) == ++ res->start) ) { ++ break; ++ } ++ } ++ ++ if (bank >= MAX_BANKS) { ++ dev_err(&pdev->dev,"address did not match any chip selects\n"); ++ return -ENOENT; ++ } ++ ++ nmtd = kmalloc (sizeof(*nmtd), GFP_KERNEL); ++ if (!nmtd) { ++ dev_err(ctrl->device, "no memory for nand chip structure\n"); ++ return -ENOMEM; ++ } ++ memset(nmtd, 0, sizeof(*nmtd)); ++ ++ platform_set_drvdata(pdev, nmtd); ++ ++ atomic_inc(&ctrl->childs_active); ++ if (pnc) ++ memcpy(&(nmtd->pl_chip), pnc, sizeof(*pnc)); ++ ctrl->nmtd[bank] = nmtd; ++ nmtd->bank = bank; ++ nmtd->ctrl = ctrl; ++ nmtd->device = &pdev->dev; ++ ++ size = ( res->end - res->start ) + 1; ++/* TODO - already requested by the elbc instance ????? ++ ctrl->area = request_mem_region(res->start, size, pdev->name); ++ if (ctrl->area == NULL) { ++ dev_err(&pdev->dev, "failed to get memory region\n"); ++ err = -ENOENT; ++ goto exit_error; ++ } ++*/ ++ nmtd->pbase = res->start; ++ nmtd->vbase = (unsigned int) ioremap(nmtd->pbase, FCM_SIZE); ++ if (nmtd->vbase == 0) { ++ dev_err(ctrl->device, "failed to ioremap() memory region\n"); ++ err = -EIO; ++ goto exit_error; ++ } ++ ++ err = fsl_elbc_chip_init(nmtd); ++ if (err != 0) ++ goto exit_error; ++ ++ err = nand_scan(&nmtd->mtd, ++ nmtd->pl_chip.nr_chips ? nmtd->pl_chip.nr_chips : 1 ); ++ if (err != 0) ++ goto exit_error; ++ ++#ifdef CONFIG_MTD_PARTITIONS ++ /* check for command line partition information */ ++ if (!(nmtd->pl_chip.options & FSL_ELBC_NO_CMDLINE_PARTITIONS)) ++ mtd_parts_nb = parse_mtd_partitions( ++ &nmtd->mtd, ++ part_probes, ++ &mtd_parts, ++ 0); ++#if 0 ++ /* otherwise try local partition string */ ++ if (mtd_parts_nb <= 0 && nmtd->pl_chip.partitions_str) ++ mtd_parts_nb = parse_mtd_string_partitions( ++ &nmtd->mtd, ++ part_probes, ++ &mtd_parts, ++ 0, ++ nmtd->pl_chip.partitions_str); ++#endif ++ if (mtd_parts_nb > 0) ++ err = add_mtd_partitions(&nmtd->mtd, ++ mtd_parts, ++ mtd_parts_nb); ++ else ++#endif ++ err = add_mtd_device(&nmtd->mtd); ++ ++ if (err == 0) ++ return 0; ++ ++ exit_error: ++ fsl_elbc_chip_remove(pdev); ++ ++ if (err == 0) ++ err = -EINVAL; ++ return err; ++} ++ ++ ++/**************************************************************************/ ++/* Controller setup and control functions */ ++/**************************************************************************/ ++ ++static int fsl_elbc_ctrl_init(struct fsl_elbc_ctrl *ctrl, ++ struct platform_device *pdev) ++{ ++ volatile lbus83xx_t *lbc= (lbus83xx_t*) ctrl->regs; ++ ++ /* Enable only FCM detection of timeouts, ECC errors and completion */ ++ lbc->ltedr = ~(LTESR_FCT | LTESR_PAR | LTESR_CC); ++ ++ /* clear event registers */ ++ lbc->lteatr = 0; ++ lbc->ltesr |= (LTESR_FCT | LTESR_PAR | LTESR_CC); ++ ++ /* Enable interrupts for any detected events */ ++ lbc->lteir = ~0; ++ ++ ctrl->read_bytes = 0; ++ ctrl->index = 0; ++ ctrl->addr = (unsigned char*) (NULL); ++ ctrl->oobbuf = -1; ++ ++ return 0; ++} ++ ++static int fsl_elbc_ctrl_remove(struct platform_device *pdev) ++{ ++ struct fsl_elbc_ctrl *ctrl = platform_get_drvdata(pdev); ++ ++ if (atomic_read(&ctrl->childs_active)) ++ return -EBUSY; ++ ++ if (ctrl->regs != NULL) { ++ iounmap(ctrl->regs); ++ ctrl->regs = NULL; ++ } ++ ++/* TODO ++ if (ctrl->area != NULL) { ++ release_resource(ctrl->area); ++ kfree(ctrl->area); ++ ctrl->area = NULL; ++ } ++*/ ++ if (ctrl->irq) { ++ free_irq(ctrl->irq, pdev); ++ ctrl->irq = 0; ++ } ++ ++ platform_set_drvdata(pdev, NULL); ++ memset(ctrl, 0, sizeof(*ctrl)); ++ ++ return 0; ++} ++ ++ ++/* interrupt handler code */ ++ ++static irqreturn_t fsl_elbc_ctrl_irq(int irqno, void *param) ++{ ++ struct fsl_elbc_ctrl *ctrl = platform_get_drvdata((struct platform_device*)param); ++ volatile lbus83xx_t *lbc= (lbus83xx_t*) ctrl->regs; ++ ++ ctrl->irq_status = lbc->ltesr & (LTESR_FCT | LTESR_PAR | LTESR_CC); ++ if (ctrl->irq_status) ++ wake_up(&ctrl->irq_wait); ++ ++ /* clear event registers */ ++ lbc->lteatr = 0; ++ lbc->ltesr |= ctrl->irq_status; ++ ++ return IRQ_HANDLED; ++} ++ ++ ++/* fsl_elbc_ctrl_probe ++ * ++ * called by device layer when it finds a device matching ++ * one our driver can handled. This code allocates all of ++ * the resources needed for the controller only. The ++ * resources for the NAND banks themselves are allocated ++ * in the chip probe function. ++*/ ++ ++static int fsl_elbc_ctrl_probe(struct platform_device *pdev) ++{ ++ struct fsl_elbc_ctrl *ctrl; ++ struct resource *res; ++ int err = 0; ++ int size; ++ int ret; ++ ++ dev_dbg(&pdev->dev, "fsl_elbc_ctrl_probe(%p)\n", pdev); ++ ctrl = &elbc_ctrl; ++ ++ memset(ctrl, 0, sizeof(*ctrl)); ++ platform_set_drvdata(pdev, ctrl); ++ ++ spin_lock_init(&ctrl->controller.lock); ++ init_waitqueue_head(&ctrl->controller.wq); ++ init_waitqueue_head(&ctrl->irq_wait); ++ ++ /* get, allocate and map the memory resource */ ++ res = platform_get_resource(pdev, IORESOURCE_MEM, 0); ++ if (res == NULL) { ++ dev_err(&pdev->dev,"failed to get memory region resouce\n"); ++ err = -ENOENT; ++ goto exit_error; ++ } ++ ++ size = ( res->end - res->start ) + 1; ++/* TODO - already requested by the elbc instance ????? ++ ctrl->area = request_mem_region(res->start, size, pdev->name); ++ if (ctrl->area == NULL) { ++ dev_err(&pdev->dev, "failed to get memory region\n"); ++ err = -ENOENT; ++ goto exit_error; ++ } ++*/ ++ ctrl->regs = ioremap(res->start, size); ++ if (ctrl->regs == 0) { ++ dev_err(&pdev->dev, "failed to ioremap() region\n"); ++ err = -EIO; ++ goto exit_error; ++ } ++ ++ /* get and allocate the irq resource */ ++ res = platform_get_resource(pdev, IORESOURCE_IRQ, 0); ++ if (res == NULL) { ++ dev_err(&pdev->dev, "failed to get irq resource\n"); ++ err = -ENOENT; ++ goto exit_error; ++ } ++ ++ ret = request_irq(res->start, fsl_elbc_ctrl_irq, 0, pdev->name, pdev); ++ if (ret != 0) { ++ dev_err(&pdev->dev, "failed to install irq (%d)\n", ret); ++ err = -EIO; ++ goto exit_error; ++ } ++ ++ ctrl->irq = res->start; ++ ctrl->device = &pdev->dev; ++ dev_dbg(&pdev->dev, "mapped registers at %p\n", ctrl->regs); ++ ++ /* initialise the hardware */ ++ ++ err = fsl_elbc_ctrl_init(ctrl, pdev); ++ if (err == 0) ++ return 0; ++ ++ exit_error: ++ fsl_elbc_ctrl_remove(pdev); ++ ++ if (err == 0) ++ err = -EINVAL; ++ return err; ++} ++ ++/* PM Support */ ++#ifdef CONFIG_PM ++ ++static int fsl_elbc_ctrl_suspend(struct platform_device *dev, pm_message_t pm) ++{ ++ return 0; ++} ++ ++static int fsl_elbc_ctrl_resume(struct platform_device *dev) ++{ ++ return 0; ++} ++ ++#else ++#define fsl_elbc_ctrl_suspend NULL ++#define fsl_elbc_ctrl_resume NULL ++#endif ++ ++/*************************************************************************/ ++/* device driver registration */ ++/*************************************************************************/ ++ ++ ++static struct platform_driver fsl_elbc_ctrl_driver = { ++ .probe = fsl_elbc_ctrl_probe, ++ .remove = fsl_elbc_ctrl_remove, ++ .suspend = fsl_elbc_ctrl_suspend, ++ .resume = fsl_elbc_ctrl_resume, ++ .driver = { ++ .name = "fsl-elbc", ++ .owner = THIS_MODULE, ++ }, ++}; ++ ++static struct platform_driver fsl_elbc_chip_driver = { ++ .probe = fsl_elbc_chip_probe, ++ .remove = fsl_elbc_chip_remove, ++ .driver = { ++ .name = "fsl-nand", ++ .owner = THIS_MODULE, ++ }, ++}; ++ ++static int __init fsl_elbc_init(void) ++{ ++ int ret; ++ ++ printk("Freescale eLBC NAND Driver (C) 2006 Freescale\n"); ++ ++ ret = platform_driver_register(&fsl_elbc_ctrl_driver); ++ if (!ret) ++ ret = platform_driver_register(&fsl_elbc_chip_driver); ++ ++ return ret; ++} ++ ++static void __exit fsl_elbc_exit(void) ++{ ++ platform_driver_unregister(&fsl_elbc_chip_driver); ++ platform_driver_unregister(&fsl_elbc_ctrl_driver); ++} ++ ++module_init(fsl_elbc_init); ++module_exit(fsl_elbc_exit); ++ ++MODULE_LICENSE("GPL"); ++MODULE_AUTHOR("Nick Spence"); ++MODULE_DESCRIPTION("Freescale Enhanced Local Bus Controller MTD NAND driver"); +diff -urN linux-2.6.24.orig/drivers/mtd/nand/Kconfig linux-2.6.24/drivers/mtd/nand/Kconfig +--- linux-2.6.24.orig/drivers/mtd/nand/Kconfig 2008-01-24 23:58:37.000000000 +0100 ++++ linux-2.6.24/drivers/mtd/nand/Kconfig 2008-02-18 16:39:43.000000000 +0100 +@@ -284,6 +284,14 @@ + depends on MTD_NAND && MACH_ARMCORE + + ++config MTD_NAND_FSL_ELBC ++ tristate "NAND support for MPC831x" ++ depends on MTD_NAND && PPC_MPC831x ++ help ++ The MPC831x includes a NAND FLASH Controller Module with built-in hardware ++ ECC capabilities. Enabling this This option will enable you to use these to ++ control external NAND device. ++ + config MTD_NAND_NANDSIM + tristate "Support for NAND Flash Simulator" + depends on MTD_PARTITIONS +diff -urN linux-2.6.24.orig/drivers/mtd/nand/Makefile linux-2.6.24/drivers/mtd/nand/Makefile +--- linux-2.6.24.orig/drivers/mtd/nand/Makefile 2008-01-24 23:58:37.000000000 +0100 ++++ linux-2.6.24/drivers/mtd/nand/Makefile 2008-02-18 16:40:08.000000000 +0100 +@@ -29,5 +29,6 @@ + obj-$(CONFIG_MTD_NAND_BASLER_EXCITE) += excite_nandflash.o + obj-$(CONFIG_MTD_NAND_PLATFORM) += plat_nand.o + obj-$(CONFIG_MTD_ALAUDA) += alauda.o ++obj-$(CONFIG_MTD_NAND_FSL_ELBC) += fsl_elbc.o + + nand-objs := nand_base.o nand_bbt.o +diff -urN linux-2.6.24.orig/include/linux/mtd/fsl_elbc.h linux-2.6.24/include/linux/mtd/fsl_elbc.h +--- linux-2.6.24.orig/include/linux/mtd/fsl_elbc.h 1970-01-01 01:00:00.000000000 +0100 ++++ linux-2.6.24/include/linux/mtd/fsl_elbc.h 2008-02-18 16:39:43.000000000 +0100 +@@ -0,0 +1,313 @@ ++/* ++ * (C) Copyright 2004-2006 Freescale Semiconductor, Inc. ++ * ++ * Freescale Enhanced Local Bus Controller Internal Memory Map ++ * ++ * History : ++ * 20061010 : Extracted fomr immap_83xx.h ++ * ++ * This program is free software; you can redistribute it and/or ++ * modify it under the terms of the GNU General Public License as ++ * published by the Free Software Foundation; either version 2 of ++ * the License, or (at your option) any later version. ++ * ++ * This program is distributed in the hope that it will be useful, ++ * but WITHOUT ANY WARRANTY; without even the implied warranty of ++ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ++ * GNU General Public License for more details. ++ * ++ * You should have received a copy of the GNU General Public License ++ * along with this program; if not, write to the Free Software ++ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, ++ * MA 02111-1307 USA ++ * ++ */ ++#ifdef __KERNEL__ ++#ifndef __FSL_ELBC__ ++#define __FSL_ELBC__ ++ ++/* ++ * Local Bus Controller Registers ++ */ ++typedef struct lbus_bank{ ++ u32 br; /**< Base Register */ ++#define BR0 0x5000 ++#define BR1 0x5008 ++#define BR2 0x5010 ++#define BR3 0x5018 ++#define BR4 0x5020 ++#define BR5 0x5028 ++#define BR6 0x5030 ++#define BR7 0x5038 ++ ++#define BR_BA 0xFFFF8000 ++#define BR_BA_SHIFT 15 ++#define BR_PS 0x00001800 ++#define BR_PS_SHIFT 11 ++#define BR_PS_8 0x00000800 /* Port Size 8 bit */ ++#define BR_PS_16 0x00001000 /* Port Size 16 bit */ ++#define BR_PS_32 0x00001800 /* Port Size 32 bit */ ++#define BR_DECC 0x00000600 ++#define BR_DECC_SHIFT 9 ++#define BR_DECC_OFF 0x00000000 /* HW ECC checking and generation off */ ++#define BR_DECC_CHK 0x00000200 /* HW ECC checking on, generation off */ ++#define BR_DECC_CHK_GEN 0x00000400 /* HW ECC checking and generation on */ ++#define BR_WP 0x00000100 ++#define BR_WP_SHIFT 8 ++#define BR_MSEL 0x000000E0 ++#define BR_MSEL_SHIFT 5 ++#define BR_MS_GPCM 0x00000000 /* GPCM */ ++#define BR_MS_FCM 0x00000020 /* FCM */ ++#define BR_MS_SDRAM 0x00000060 /* SDRAM */ ++#define BR_MS_UPMA 0x00000080 /* UPMA */ ++#define BR_MS_UPMB 0x000000A0 /* UPMB */ ++#define BR_MS_UPMC 0x000000C0 /* UPMC */ ++#define BR_V 0x00000001 ++#define BR_V_SHIFT 0 ++#define BR_RES ~(BR_BA|BR_PS|BR_DECC|BR_WP|BR_MSEL|BR_V) ++ ++ u32 or; /**< Base Register */ ++#define OR0 0x5004 ++#define OR1 0x500C ++#define OR2 0x5014 ++#define OR3 0x501C ++#define OR4 0x5024 ++#define OR5 0x502C ++#define OR6 0x5034 ++#define OR7 0x503C ++ ++#define OR_GPCM_AM 0xFFFF8000 ++#define OR_GPCM_AM_SHIFT 15 ++#define OR_GPCM_BCTLD 0x00001000 ++#define OR_GPCM_BCTLD_SHIFT 12 ++#define OR_GPCM_CSNT 0x00000800 ++#define OR_GPCM_CSNT_SHIFT 11 ++#define OR_GPCM_ACS 0x00000600 ++#define OR_GPCM_ACS_SHIFT 9 ++#define OR_GPCM_ACS_0b10 0x00000400 ++#define OR_GPCM_ACS_0b11 0x00000600 ++#define OR_GPCM_XACS 0x00000100 ++#define OR_GPCM_XACS_SHIFT 8 ++#define OR_GPCM_SCY 0x000000F0 ++#define OR_GPCM_SCY_SHIFT 4 ++#define OR_GPCM_SCY_1 0x00000010 ++#define OR_GPCM_SCY_2 0x00000020 ++#define OR_GPCM_SCY_3 0x00000030 ++#define OR_GPCM_SCY_4 0x00000040 ++#define OR_GPCM_SCY_5 0x00000050 ++#define OR_GPCM_SCY_6 0x00000060 ++#define OR_GPCM_SCY_7 0x00000070 ++#define OR_GPCM_SCY_8 0x00000080 ++#define OR_GPCM_SCY_9 0x00000090 ++#define OR_GPCM_SCY_10 0x000000a0 ++#define OR_GPCM_SCY_11 0x000000b0 ++#define OR_GPCM_SCY_12 0x000000c0 ++#define OR_GPCM_SCY_13 0x000000d0 ++#define OR_GPCM_SCY_14 0x000000e0 ++#define OR_GPCM_SCY_15 0x000000f0 ++#define OR_GPCM_SETA 0x00000008 ++#define OR_GPCM_SETA_SHIFT 3 ++#define OR_GPCM_TRLX 0x00000004 ++#define OR_GPCM_TRLX_SHIFT 2 ++#define OR_GPCM_EHTR 0x00000002 ++#define OR_GPCM_EHTR_SHIFT 1 ++#define OR_GPCM_EAD 0x00000001 ++#define OR_GPCM_EAD_SHIFT 0 ++ ++#define OR_UPM_AM 0xFFFF8000 ++#define OR_UPM_AM_SHIFT 15 ++#define OR_UPM_XAM 0x00006000 ++#define OR_UPM_XAM_SHIFT 13 ++#define OR_UPM_BCTLD 0x00001000 ++#define OR_UPM_BCTLD_SHIFT 12 ++#define OR_UPM_BI 0x00000100 ++#define OR_UPM_BI_SHIFT 8 ++#define OR_UPM_TRLX 0x00000004 ++#define OR_UPM_TRLX_SHIFT 2 ++#define OR_UPM_EHTR 0x00000002 ++#define OR_UPM_EHTR_SHIFT 1 ++#define OR_UPM_EAD 0x00000001 ++#define OR_UPM_EAD_SHIFT 0 ++ ++#define OR_SDRAM_AM 0xFFFF8000 ++#define OR_SDRAM_AM_SHIFT 15 ++#define OR_SDRAM_XAM 0x00006000 ++#define OR_SDRAM_XAM_SHIFT 13 ++#define OR_SDRAM_COLS 0x00001C00 ++#define OR_SDRAM_COLS_SHIFT 10 ++#define OR_SDRAM_ROWS 0x000001C0 ++#define OR_SDRAM_ROWS_SHIFT 6 ++#define OR_SDRAM_PMSEL 0x00000020 ++#define OR_SDRAM_PMSEL_SHIFT 5 ++#define OR_SDRAM_EAD 0x00000001 ++#define OR_SDRAM_EAD_SHIFT 0 ++ ++#define OR_FCM_AM 0xFFFF8000 ++#define OR_FCM_AM_SHIFT 15 ++#define OR_FCM_BCTLD 0x00001000 ++#define OR_FCM_BCTLD_SHIFT 12 ++#define OR_FCM_PGS 0x00000400 ++#define OR_FCM_PGS_SHIFT 10 ++#define OR_FCM_CSCT 0x00000200 ++#define OR_FCM_CSCT_SHIFT 9 ++#define OR_FCM_CST 0x00000100 ++#define OR_FCM_CST_SHIFT 8 ++#define OR_FCM_CHT 0x00000080 ++#define OR_FCM_CHT_SHIFT 7 ++#define OR_FCM_SCY 0x00000070 ++#define OR_FCM_SCY_SHIFT 4 ++#define OR_FCM_SCY_1 0x00000010 ++#define OR_FCM_SCY_2 0x00000020 ++#define OR_FCM_SCY_3 0x00000030 ++#define OR_FCM_SCY_4 0x00000040 ++#define OR_FCM_SCY_5 0x00000050 ++#define OR_FCM_SCY_6 0x00000060 ++#define OR_FCM_SCY_7 0x00000070 ++#define OR_FCM_RST 0x00000008 ++#define OR_FCM_RST_SHIFT 3 ++#define OR_FCM_TRLX 0x00000004 ++#define OR_FCM_TRLX_SHIFT 2 ++#define OR_FCM_EHTR 0x00000002 ++#define OR_FCM_EHTR_SHIFT 1 ++} lbus_bank_t; ++ ++typedef struct lbus83xx { ++ lbus_bank_t bank[8]; ++ u8 res0[0x28]; ++ u32 mar; /**< UPM Address Register */ ++ u8 res1[0x4]; ++ u32 mamr; /**< UPMA Mode Register */ ++ u32 mbmr; /**< UPMB Mode Register */ ++ u32 mcmr; /**< UPMC Mode Register */ ++ u8 res2[0x8]; ++ u32 mrtpr; /**< Memory Refresh Timer Prescaler Register */ ++ u32 mdr; /**< UPM Data Register */ ++ u8 res3[0x4]; ++ u32 lsor; /**< Special Operation Initiation Register */ ++ u32 lsdmr; /**< SDRAM Mode Register */ ++ u8 res4[0x8]; ++ u32 lurt; /**< UPM Refresh Timer */ ++ u32 lsrt; /**< SDRAM Refresh Timer */ ++ u8 res5[0x8]; ++ u32 ltesr; /**< Transfer Error Status Register */ ++#define LTESR_BM 0x80000000 ++#define LTESR_FCT 0x40000000 ++#define LTESR_PAR 0x20000000 ++#define LTESR_WP 0x04000000 ++#define LTESR_ATMW 0x00800000 ++#define LTESR_ATMR 0x00400000 ++#define LTESR_CS 0x00080000 ++#define LTESR_CC 0x00000001 ++ u32 ltedr; /**< Transfer Error Disable Register */ ++ u32 lteir; /**< Transfer Error Interrupt Register */ ++ u32 lteatr; /**< Transfer Error Attributes Register */ ++ u32 ltear; /**< Transfer Error Address Register */ ++ u8 res6[0xC]; ++ u32 lbcr; /**< Configuration Register */ ++#define LBCR_LDIS 0x80000000 ++#define LBCR_LDIS_SHIFT 31 ++#define LBCR_BCTLC 0x00C00000 ++#define LBCR_BCTLC_SHIFT 22 ++#define LBCR_AHD 0x00200000 ++#define LBCR_LPBSE 0x00020000 ++#define LBCR_LPBSE_SHIFT 17 ++#define LBCR_EPAR 0x00010000 ++#define LBCR_EPAR_SHIFT 16 ++#define LBCR_BMT 0x0000FF00 ++#define LBCR_BMT_SHIFT 8 ++#define LBCR_INIT 0x00040000 ++ u32 lcrr; /**< Clock Ratio Register */ ++#define LCRR_DBYP 0x80000000 ++#define LCRR_DBYP_SHIFT 31 ++#define LCRR_BUFCMDC 0x30000000 ++#define LCRR_BUFCMDC_SHIFT 28 ++#define LCRR_ECL 0x03000000 ++#define LCRR_ECL_SHIFT 24 ++#define LCRR_EADC 0x00030000 ++#define LCRR_EADC_SHIFT 16 ++#define LCRR_CLKDIV 0x0000000F ++#define LCRR_CLKDIV_SHIFT 0 ++ u8 res7[0x8]; ++ u32 fmr; /**< Flash Mode Register */ ++#define FMR_CWTO 0x0000F000 ++#define FMR_CWTO_SHIFT 12 ++#define FMR_BOOT 0x00000800 ++#define FMR_ECCM 0x00000100 ++#define FMR_AL 0x00000030 ++#define FMR_AL_SHIFT 4 ++#define FMR_OP 0x00000003 ++#define FMR_OP_SHIFT 0 ++ u32 fir; /**< Flash Instruction Register */ ++#define FIR_OP0 0xF0000000 ++#define FIR_OP0_SHIFT 28 ++#define FIR_OP1 0x0F000000 ++#define FIR_OP1_SHIFT 24 ++#define FIR_OP2 0x00F00000 ++#define FIR_OP2_SHIFT 20 ++#define FIR_OP3 0x000F0000 ++#define FIR_OP3_SHIFT 16 ++#define FIR_OP4 0x0000F000 ++#define FIR_OP4_SHIFT 12 ++#define FIR_OP5 0x00000F00 ++#define FIR_OP5_SHIFT 8 ++#define FIR_OP6 0x000000F0 ++#define FIR_OP6_SHIFT 4 ++#define FIR_OP7 0x0000000F ++#define FIR_OP7_SHIFT 0 ++#define FIR_OP_NOP 0x0 /* No operation and end of sequence */ ++#define FIR_OP_CA 0x1 /* Issue current column address */ ++#define FIR_OP_PA 0x2 /* Issue current block+page address */ ++#define FIR_OP_UA 0x3 /* Issue user defined address */ ++#define FIR_OP_CM0 0x4 /* Issue command from FCR[CMD0] */ ++#define FIR_OP_CM1 0x5 /* Issue command from FCR[CMD1] */ ++#define FIR_OP_CM2 0x6 /* Issue command from FCR[CMD2] */ ++#define FIR_OP_CM3 0x7 /* Issue command from FCR[CMD3] */ ++#define FIR_OP_WB 0x8 /* Write FBCR bytes from FCM buffer */ ++#define FIR_OP_WS 0x9 /* Write 1 or 2 bytes from MDR[AS] */ ++#define FIR_OP_RB 0xA /* Read FBCR bytes to FCM buffer */ ++#define FIR_OP_RS 0xB /* Read 1 or 2 bytes to MDR[AS] */ ++#define FIR_OP_CW0 0xC /* Wait then issue FCR[CMD0] */ ++#define FIR_OP_CW1 0xD /* Wait then issue FCR[CMD1] */ ++#define FIR_OP_RBW 0xE /* Wait then read FBCR bytes */ ++#define FIR_OP_RSW 0xE /* Wait then read 1 or 2 bytes */ ++ u32 fcr; /**< Flash Command Register */ ++#define FCR_CMD0 0xFF000000 ++#define FCR_CMD0_SHIFT 24 ++#define FCR_CMD1 0x00FF0000 ++#define FCR_CMD1_SHIFT 16 ++#define FCR_CMD2 0x0000FF00 ++#define FCR_CMD2_SHIFT 8 ++#define FCR_CMD3 0x000000FF ++#define FCR_CMD3_SHIFT 0 ++ u32 fbar; /**< Flash Block Address Register */ ++#define FBAR_BLK 0x00FFFFFF ++ u32 fpar; /**< Flash Page Address Register */ ++#define FPAR_SP_PI 0x00007C00 ++#define FPAR_SP_PI_SHIFT 10 ++#define FPAR_SP_MS 0x00000200 ++#define FPAR_SP_CI 0x000001FF ++#define FPAR_SP_CI_SHIFT 0 ++#define FPAR_LP_PI 0x0003F000 ++#define FPAR_LP_PI_SHIFT 12 ++#define FPAR_LP_MS 0x00000800 ++#define FPAR_LP_CI 0x000007FF ++#define FPAR_LP_CI_SHIFT 0 ++ u32 fbcr; /**< Flash Byte Count Register */ ++#define FBCR_BC 0x00000FFF ++ u8 res11[0x8]; ++ u8 res8[0xF00]; ++} lbus83xx_t; ++ ++struct platform_fsl_nand_chip { ++ const char *name; ++ int nr_chips; ++ const char *partitions_str; ++ unsigned int options; ++}; ++ ++/* Setting this option prevents the command line from being parsed ++ * for MTD partitions. */ ++#define FSL_ELBC_NO_CMDLINE_PARTITIONS 0x10000000 ++ ++#endif /* __FSL_ELBC__ */ ++#endif /* __KERNEL__ */ |