summaryrefslogtreecommitdiff
path: root/include/rapidjson/internal/strtod.h
blob: dfca22b65ac03b9cfae6d684fecd5e0c3dec7946 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
// Tencent is pleased to support the open source community by making RapidJSON available.
// 
// Copyright (C) 2015 THL A29 Limited, a Tencent company, and Milo Yip. All rights reserved.
//
// Licensed under the MIT License (the "License"); you may not use this file except
// in compliance with the License. You may obtain a copy of the License at
//
// http://opensource.org/licenses/MIT
//
// Unless required by applicable law or agreed to in writing, software distributed 
// under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR 
// CONDITIONS OF ANY KIND, either express or implied. See the License for the 
// specific language governing permissions and limitations under the License.

#ifndef RAPIDJSON_STRTOD_
#define RAPIDJSON_STRTOD_

#include "ieee754.h"
#include "biginteger.h"
#include "diyfp.h"
#include "pow10.h"
#include <climits>
#include <limits>

RAPIDJSON_NAMESPACE_BEGIN
namespace internal {

inline double FastPath(double significand, int exp) {
    if (exp < -308)
        return 0.0;
    else if (exp >= 0)
        return significand * internal::Pow10(exp);
    else
        return significand / internal::Pow10(-exp);
}

inline double StrtodNormalPrecision(double d, int p) {
    if (p < -308) {
        // Prevent expSum < -308, making Pow10(p) = 0
        d = FastPath(d, -308);
        d = FastPath(d, p + 308);
    }
    else
        d = FastPath(d, p);
    return d;
}

template <typename T>
inline T Min3(T a, T b, T c) {
    T m = a;
    if (m > b) m = b;
    if (m > c) m = c;
    return m;
}

inline int CheckWithinHalfULP(double b, const BigInteger& d, int dExp) {
    const Double db(b);
    const uint64_t bInt = db.IntegerSignificand();
    const int bExp = db.IntegerExponent();
    const int hExp = bExp - 1;

    int dS_Exp2 = 0, dS_Exp5 = 0, bS_Exp2 = 0, bS_Exp5 = 0, hS_Exp2 = 0, hS_Exp5 = 0;

    // Adjust for decimal exponent
    if (dExp >= 0) {
        dS_Exp2 += dExp;
        dS_Exp5 += dExp;
    }
    else {
        bS_Exp2 -= dExp;
        bS_Exp5 -= dExp;
        hS_Exp2 -= dExp;
        hS_Exp5 -= dExp;
    }

    // Adjust for binary exponent
    if (bExp >= 0)
        bS_Exp2 += bExp;
    else {
        dS_Exp2 -= bExp;
        hS_Exp2 -= bExp;
    }

    // Adjust for half ulp exponent
    if (hExp >= 0)
        hS_Exp2 += hExp;
    else {
        dS_Exp2 -= hExp;
        bS_Exp2 -= hExp;
    }

    // Remove common power of two factor from all three scaled values
    int common_Exp2 = Min3(dS_Exp2, bS_Exp2, hS_Exp2);
    dS_Exp2 -= common_Exp2;
    bS_Exp2 -= common_Exp2;
    hS_Exp2 -= common_Exp2;

    BigInteger dS = d;
    dS.MultiplyPow5(static_cast<unsigned>(dS_Exp5)) <<= static_cast<unsigned>(dS_Exp2);

    BigInteger bS(bInt);
    bS.MultiplyPow5(static_cast<unsigned>(bS_Exp5)) <<= static_cast<unsigned>(bS_Exp2);

    BigInteger hS(1);
    hS.MultiplyPow5(static_cast<unsigned>(hS_Exp5)) <<= static_cast<unsigned>(hS_Exp2);

    BigInteger delta(0);
    dS.Difference(bS, &delta);

    return delta.Compare(hS);
}

inline bool StrtodFast(double d, int p, double* result) {
    // Use fast path for string-to-double conversion if possible
    // see http://www.exploringbinary.com/fast-path-decimal-to-floating-point-conversion/
    if (p > 22  && p < 22 + 16) {
        // Fast Path Cases In Disguise
        d *= internal::Pow10(p - 22);
        p = 22;
    }

    if (p >= -22 && p <= 22 && d <= 9007199254740991.0) { // 2^53 - 1
        *result = FastPath(d, p);
        return true;
    }
    else
        return false;
}

// Compute an approximation and see if it is within 1/2 ULP
inline bool StrtodDiyFp(const char* decimals, int dLen, int dExp, double* result) {
    uint64_t significand = 0;
    int i = 0;   // 2^64 - 1 = 18446744073709551615, 1844674407370955161 = 0x1999999999999999    
    for (; i < dLen; i++) {
        if (significand  >  RAPIDJSON_UINT64_C2(0x19999999, 0x99999999) ||
            (significand == RAPIDJSON_UINT64_C2(0x19999999, 0x99999999) && decimals[i] > '5'))
            break;
        significand = significand * 10u + static_cast<unsigned>(decimals[i] - '0');
    }
    
    if (i < dLen && decimals[i] >= '5') // Rounding
        significand++;

    int remaining = dLen - i;
    const int kUlpShift = 3;
    const int kUlp = 1 << kUlpShift;
    int64_t error = (remaining == 0) ? 0 : kUlp / 2;

    DiyFp v(significand, 0);
    v = v.Normalize();
    error <<= -v.e;

    dExp += remaining;

    int actualExp;
    DiyFp cachedPower = GetCachedPower10(dExp, &actualExp);
    if (actualExp != dExp) {
        static const DiyFp kPow10[] = {
            DiyFp(RAPIDJSON_UINT64_C2(0xa0000000, 0x00000000), -60),  // 10^1
            DiyFp(RAPIDJSON_UINT64_C2(0xc8000000, 0x00000000), -57),  // 10^2
            DiyFp(RAPIDJSON_UINT64_C2(0xfa000000, 0x00000000), -54),  // 10^3
            DiyFp(RAPIDJSON_UINT64_C2(0x9c400000, 0x00000000), -50),  // 10^4
            DiyFp(RAPIDJSON_UINT64_C2(0xc3500000, 0x00000000), -47),  // 10^5
            DiyFp(RAPIDJSON_UINT64_C2(0xf4240000, 0x00000000), -44),  // 10^6
            DiyFp(RAPIDJSON_UINT64_C2(0x98968000, 0x00000000), -40)   // 10^7
        };
        int adjustment = dExp - actualExp;
        RAPIDJSON_ASSERT(adjustment >= 1 && adjustment < 8);
        v = v * kPow10[adjustment - 1];
        if (dLen + adjustment > 19) // has more digits than decimal digits in 64-bit
            error += kUlp / 2;
    }

    v = v * cachedPower;

    error += kUlp + (error == 0 ? 0 : 1);

    const int oldExp = v.e;
    v = v.Normalize();
    error <<= oldExp - v.e;

    const int effectiveSignificandSize = Double::EffectiveSignificandSize(64 + v.e);
    int precisionSize = 64 - effectiveSignificandSize;
    if (precisionSize + kUlpShift >= 64) {
        int scaleExp = (precisionSize + kUlpShift) - 63;
        v.f >>= scaleExp;
        v.e += scaleExp; 
        error = (error >> scaleExp) + 1 + kUlp;
        precisionSize -= scaleExp;
    }

    DiyFp rounded(v.f >> precisionSize, v.e + precisionSize);
    const uint64_t precisionBits = (v.f & ((uint64_t(1) << precisionSize) - 1)) * kUlp;
    const uint64_t halfWay = (uint64_t(1) << (precisionSize - 1)) * kUlp;
    if (precisionBits >= halfWay + static_cast<unsigned>(error)) {
        rounded.f++;
        if (rounded.f & (DiyFp::kDpHiddenBit << 1)) { // rounding overflows mantissa (issue #340)
            rounded.f >>= 1;
            rounded.e++;
        }
    }

    *result = rounded.ToDouble();

    return halfWay - static_cast<unsigned>(error) >= precisionBits || precisionBits >= halfWay + static_cast<unsigned>(error);
}

inline double StrtodBigInteger(double approx, const char* decimals, int dLen, int dExp) {
    RAPIDJSON_ASSERT(dLen >= 0);
    const BigInteger dInt(decimals, static_cast<unsigned>(dLen));
    Double a(approx);
    int cmp = CheckWithinHalfULP(a.Value(), dInt, dExp);
    if (cmp < 0)
        return a.Value();  // within half ULP
    else if (cmp == 0) {
        // Round towards even
        if (a.Significand() & 1)
            return a.NextPositiveDouble();
        else
            return a.Value();
    }
    else // adjustment
        return a.NextPositiveDouble();
}

inline double StrtodFullPrecision(double d, int p, const char* decimals, size_t length, size_t decimalPosition, int exp) {
    RAPIDJSON_ASSERT(d >= 0.0);
    RAPIDJSON_ASSERT(length >= 1);

    double result = 0.0;
    if (StrtodFast(d, p, &result))
        return result;

    RAPIDJSON_ASSERT(length <= INT_MAX);
    int dLen = static_cast<int>(length);

    RAPIDJSON_ASSERT(length >= decimalPosition);
    RAPIDJSON_ASSERT(length - decimalPosition <= INT_MAX);
    int dExpAdjust = static_cast<int>(length - decimalPosition);

    RAPIDJSON_ASSERT(exp >= INT_MIN + dExpAdjust);
    int dExp = exp - dExpAdjust;

    // Make sure length+dExp does not overflow
    RAPIDJSON_ASSERT(dExp <= INT_MAX - dLen);

    // Trim leading zeros
    while (dLen > 0 && *decimals == '0') {
        dLen--;
        decimals++;
    }

    // Trim trailing zeros
    while (dLen > 0 && decimals[dLen - 1] == '0') {
        dLen--;
        dExp++;
    }

    if (dLen == 0) { // Buffer only contains zeros.
        return 0.0;
    }

    // Trim right-most digits
    const int kMaxDecimalDigit = 767 + 1;
    if (dLen > kMaxDecimalDigit) {
        dExp += dLen - kMaxDecimalDigit;
        dLen = kMaxDecimalDigit;
    }

    // If too small, underflow to zero.
    // Any x <= 10^-324 is interpreted as zero.
    if (dLen + dExp <= -324)
        return 0.0;

    // If too large, overflow to infinity.
    // Any x >= 10^309 is interpreted as +infinity.
    if (dLen + dExp > 309)
        return std::numeric_limits<double>::infinity();

    if (StrtodDiyFp(decimals, dLen, dExp, &result))
        return result;

    // Use approximation from StrtodDiyFp and make adjustment with BigInteger comparison
    return StrtodBigInteger(result, decimals, dLen, dExp);
}

} // namespace internal
RAPIDJSON_NAMESPACE_END

#endif // RAPIDJSON_STRTOD_