summaryrefslogtreecommitdiff
path: root/libloragw/src/loragw_hal.c
blob: 9355cb833718ee4a947611bae7230b017726c4c6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
/*
 / _____)             _              | |
( (____  _____ ____ _| |_ _____  ____| |__
 \____ \| ___ |    (_   _) ___ |/ ___)  _ \
 _____) ) ____| | | || |_| ____( (___| | | |
(______/|_____)_|_|_| \__)_____)\____)_| |_|
  (C)2013 Semtech-Cycleo

Description:
    LoRa concentrator Hardware Abstraction Layer

License: Revised BSD License, see LICENSE.TXT file include in the project
Maintainer: Sylvain Miermont
*/


/* -------------------------------------------------------------------------- */
/* --- DEPENDANCIES --------------------------------------------------------- */

#include <stdint.h>     /* C99 types */
#include <stdbool.h>    /* bool type */
#include <stdio.h>      /* printf fprintf */
#include <string.h>     /* memcpy */
#include <math.h>       /* pow, cell */

#include "loragw_reg.h"
#include "loragw_hal.h"
#include "loragw_aux.h"
#include "loragw_spi.h"
#include "loragw_radio.h"
#include "loragw_fpga.h"
#include "loragw_lbt.h"

/* -------------------------------------------------------------------------- */
/* --- PRIVATE MACROS ------------------------------------------------------- */

#define ARRAY_SIZE(a) (sizeof(a) / sizeof((a)[0]))
#if DEBUG_HAL == 1
    #define DEBUG_MSG(str)                fprintf(stderr, str)
    #define DEBUG_PRINTF(fmt, args...)    fprintf(stderr,"%s:%d: "fmt, __FUNCTION__, __LINE__, args)
    #define DEBUG_ARRAY(a,b,c)            for(a=0;a<b;++a) fprintf(stderr,"%x.",c[a]);fprintf(stderr,"end\n")
    #define CHECK_NULL(a)                 if(a==NULL){fprintf(stderr,"%s:%d: ERROR: NULL POINTER AS ARGUMENT\n", __FUNCTION__, __LINE__);return LGW_HAL_ERROR;}
#else
    #define DEBUG_MSG(str)
    #define DEBUG_PRINTF(fmt, args...)
    #define DEBUG_ARRAY(a,b,c)            for(a=0;a!=0;){}
    #define CHECK_NULL(a)                 if(a==NULL){return LGW_HAL_ERROR;}
#endif

#define IF_HZ_TO_REG(f)     (f << 5)/15625
#define SET_PPM_ON(bw,dr)   (((bw == BW_125KHZ) && ((dr == DR_LORA_SF11) || (dr == DR_LORA_SF12))) || ((bw == BW_250KHZ) && (dr == DR_LORA_SF12)))
#define TRACE()             fprintf(stderr, "@ %s %d\n", __FUNCTION__, __LINE__);

/* -------------------------------------------------------------------------- */
/* --- PRIVATE CONSTANTS & TYPES -------------------------------------------- */

#define MCU_ARB             0
#define MCU_AGC             1
#define MCU_ARB_FW_BYTE     8192 /* size of the firmware IN BYTES (= twice the number of 14b words) */
#define MCU_AGC_FW_BYTE     8192 /* size of the firmware IN BYTES (= twice the number of 14b words) */
#define FW_VERSION_ADDR     0x20 /* Address of firmware version in data memory */
#define FW_VERSION_CAL      2 /* Expected version of calibration firmware */
#define FW_VERSION_AGC      4 /* Expected version of AGC firmware */
#define FW_VERSION_ARB      1 /* Expected version of arbiter firmware */

#define TX_METADATA_NB      16
#define RX_METADATA_NB      16

#define AGC_CMD_WAIT        16
#define AGC_CMD_ABORT       17

#define MIN_LORA_PREAMBLE   6
#define STD_LORA_PREAMBLE   8
#define MIN_FSK_PREAMBLE    3
#define STD_FSK_PREAMBLE    5

#define RSSI_MULTI_BIAS     -35 /* difference between "multi" modem RSSI offset and "stand-alone" modem RSSI offset */
#define RSSI_FSK_POLY_0     60 /* polynomiam coefficients to linearize FSK RSSI */
#define RSSI_FSK_POLY_1     1.5351
#define RSSI_FSK_POLY_2     0.003

/* Useful bandwidth of SX125x radios to consider depending on channel bandwidth */
/* Note: the below values come from lab measurements. For any question, please contact Semtech support */
#define LGW_RF_RX_BANDWIDTH_125KHZ  925000      /* for 125KHz channels */
#define LGW_RF_RX_BANDWIDTH_250KHZ  1000000     /* for 250KHz channels */
#define LGW_RF_RX_BANDWIDTH_500KHZ  1100000     /* for 500KHz channels */

#define TX_START_DELAY_DEFAULT  1497 /* Calibrated value for 500KHz BW and notch filter disabled */

/* constant arrays defining hardware capability */
const uint8_t ifmod_config[LGW_IF_CHAIN_NB] = LGW_IFMODEM_CONFIG;

/* Version string, used to identify the library version/options once compiled */
const char lgw_version_string[] = "Version: " LIBLORAGW_VERSION ";";

/* -------------------------------------------------------------------------- */
/* --- PRIVATE VARIABLES ---------------------------------------------------- */

#include "arb_fw.var" /* external definition of the variable */
#include "agc_fw.var" /* external definition of the variable */
#include "cal_fw.var" /* external definition of the variable */

/*
The following static variables are the configuration set that the user can
modify using rxrf_setconf, rxif_setconf and txgain_setconf functions.
The functions _start and _send then use that set to configure the hardware.

Parameters validity and coherency is verified by the _setconf functions and
the _start and _send functions assume they are valid.
*/

static bool lgw_is_started;

static bool rf_enable[LGW_RF_CHAIN_NB];
static uint32_t rf_rx_freq[LGW_RF_CHAIN_NB]; /* absolute, in Hz */
static float rf_rssi_offset[LGW_RF_CHAIN_NB];
static bool rf_tx_enable[LGW_RF_CHAIN_NB];
static uint32_t rf_tx_notch_freq[LGW_RF_CHAIN_NB];
static enum lgw_radio_type_e rf_radio_type[LGW_RF_CHAIN_NB];

static bool if_enable[LGW_IF_CHAIN_NB];
static bool if_rf_chain[LGW_IF_CHAIN_NB]; /* for each IF, 0 -> radio A, 1 -> radio B */
static int32_t if_freq[LGW_IF_CHAIN_NB]; /* relative to radio frequency, +/- in Hz */

static uint8_t lora_multi_sfmask[LGW_MULTI_NB]; /* enables SF for LoRa 'multi' modems */

static uint8_t lora_rx_bw; /* bandwidth setting for LoRa standalone modem */
static uint8_t lora_rx_sf; /* spreading factor setting for LoRa standalone modem */
static bool lora_rx_ppm_offset;

static uint8_t fsk_rx_bw; /* bandwidth setting of FSK modem */
static uint32_t fsk_rx_dr; /* FSK modem datarate in bauds */
static uint8_t fsk_sync_word_size = 3; /* default number of bytes for FSK sync word */
static uint64_t fsk_sync_word= 0xC194C1; /* default FSK sync word (ALIGNED RIGHT, MSbit first) */

static bool lorawan_public = false;
static uint8_t rf_clkout = 0;
static uint8_t max_tx_power = 32; /* default uncalibrated max tx power */

static struct lgw_tx_gain_lut_s txgain_lut = {
    .size = 2,
    .lut[0] = {
        .dig_gain = 0,
        .pa_gain = 2,
        .dac_gain = 3,
        .mix_gain = 10,
        .rf_power = 14
    },
    .lut[1] = {
        .dig_gain = 0,
        .pa_gain = 3,
        .dac_gain = 3,
        .mix_gain = 14,
        .rf_power = 27
    }};

/* TX I/Q imbalance coefficients for mixer gain = 8 to 15 */
static int8_t cal_offset_a_i[8]; /* TX I offset for radio A */
static int8_t cal_offset_a_q[8]; /* TX Q offset for radio A */
static int8_t cal_offset_b_i[8]; /* TX I offset for radio B */
static int8_t cal_offset_b_q[8]; /* TX Q offset for radio B */

/* -------------------------------------------------------------------------- */
/* --- PRIVATE FUNCTIONS DECLARATION ---------------------------------------- */

int load_firmware(uint8_t target, uint8_t *firmware, uint16_t size);

void lgw_constant_adjust(void);

int32_t lgw_sf_getval(int x);
int32_t lgw_bw_getval(int x);

/* -------------------------------------------------------------------------- */
/* --- PRIVATE FUNCTIONS DEFINITION ----------------------------------------- */

/* size is the firmware size in bytes (not 14b words) */
int load_firmware(uint8_t target, uint8_t *firmware, uint16_t size) {
    int reg_rst;
    int reg_sel;
    uint8_t fw_check[8192];
    int32_t dummy;

    /* check parameters */
    CHECK_NULL(firmware);
    if (target == MCU_ARB) {
        if (size != MCU_ARB_FW_BYTE) {
            DEBUG_MSG("ERROR: NOT A VALID SIZE FOR MCU ARG FIRMWARE\n");
            return -1;
        }
        reg_rst = LGW_MCU_RST_0;
        reg_sel = LGW_MCU_SELECT_MUX_0;
    }else if (target == MCU_AGC) {
        if (size != MCU_AGC_FW_BYTE) {
            DEBUG_MSG("ERROR: NOT A VALID SIZE FOR MCU AGC FIRMWARE\n");
            return -1;
        }
        reg_rst = LGW_MCU_RST_1;
        reg_sel = LGW_MCU_SELECT_MUX_1;
    } else {
        DEBUG_MSG("ERROR: NOT A VALID TARGET FOR LOADING FIRMWARE\n");
        return -1;
    }

    /* reset the targeted MCU */
    lgw_reg_w(reg_rst, 1);

    /* set mux to access MCU program RAM and set address to 0 */
    lgw_reg_w(reg_sel, 0);
    lgw_reg_w(LGW_MCU_PROM_ADDR, 0);

    /* write the program in one burst */
    lgw_reg_wb(LGW_MCU_PROM_DATA, firmware, size);

    /* Read back firmware code for check */
    lgw_reg_r( LGW_MCU_PROM_DATA, &dummy ); /* bug workaround */
    lgw_reg_rb( LGW_MCU_PROM_DATA, fw_check, size );
    if (memcmp(firmware, fw_check, size) != 0) {
        printf ("ERROR: Failed to load fw %d\n", (int)target);
        return -1;
    }

    /* give back control of the MCU program ram to the MCU */
    lgw_reg_w(reg_sel, 1);

    return 0;
}

/* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ */

void lgw_constant_adjust(void) {

    /* I/Q path setup */
    // lgw_reg_w(LGW_RX_INVERT_IQ,0); /* default 0 */
    // lgw_reg_w(LGW_MODEM_INVERT_IQ,1); /* default 1 */
    // lgw_reg_w(LGW_CHIRP_INVERT_RX,1); /* default 1 */
    // lgw_reg_w(LGW_RX_EDGE_SELECT,0); /* default 0 */
    // lgw_reg_w(LGW_MBWSSF_MODEM_INVERT_IQ,0); /* default 0 */
    // lgw_reg_w(LGW_DC_NOTCH_EN,1); /* default 1 */
    lgw_reg_w(LGW_RSSI_BB_FILTER_ALPHA,6); /* default 7 */
    lgw_reg_w(LGW_RSSI_DEC_FILTER_ALPHA,7); /* default 5 */
    lgw_reg_w(LGW_RSSI_CHANN_FILTER_ALPHA,7); /* default 8 */
    lgw_reg_w(LGW_RSSI_BB_DEFAULT_VALUE,23); /* default 32 */
    lgw_reg_w(LGW_RSSI_CHANN_DEFAULT_VALUE,85); /* default 100 */
    lgw_reg_w(LGW_RSSI_DEC_DEFAULT_VALUE,66); /* default 100 */
    lgw_reg_w(LGW_DEC_GAIN_OFFSET,7); /* default 8 */
    lgw_reg_w(LGW_CHAN_GAIN_OFFSET,6); /* default 7 */

    /* Correlator setup */
    // lgw_reg_w(LGW_CORR_DETECT_EN,126); /* default 126 */
    // lgw_reg_w(LGW_CORR_NUM_SAME_PEAK,4); /* default 4 */
    // lgw_reg_w(LGW_CORR_MAC_GAIN,5); /* default 5 */
    // lgw_reg_w(LGW_CORR_SAME_PEAKS_OPTION_SF6,0); /* default 0 */
    // lgw_reg_w(LGW_CORR_SAME_PEAKS_OPTION_SF7,1); /* default 1 */
    // lgw_reg_w(LGW_CORR_SAME_PEAKS_OPTION_SF8,1); /* default 1 */
    // lgw_reg_w(LGW_CORR_SAME_PEAKS_OPTION_SF9,1); /* default 1 */
    // lgw_reg_w(LGW_CORR_SAME_PEAKS_OPTION_SF10,1); /* default 1 */
    // lgw_reg_w(LGW_CORR_SAME_PEAKS_OPTION_SF11,1); /* default 1 */
    // lgw_reg_w(LGW_CORR_SAME_PEAKS_OPTION_SF12,1); /* default 1 */
    // lgw_reg_w(LGW_CORR_SIG_NOISE_RATIO_SF6,4); /* default 4 */
    // lgw_reg_w(LGW_CORR_SIG_NOISE_RATIO_SF7,4); /* default 4 */
    // lgw_reg_w(LGW_CORR_SIG_NOISE_RATIO_SF8,4); /* default 4 */
    // lgw_reg_w(LGW_CORR_SIG_NOISE_RATIO_SF9,4); /* default 4 */
    // lgw_reg_w(LGW_CORR_SIG_NOISE_RATIO_SF10,4); /* default 4 */
    // lgw_reg_w(LGW_CORR_SIG_NOISE_RATIO_SF11,4); /* default 4 */
    // lgw_reg_w(LGW_CORR_SIG_NOISE_RATIO_SF12,4); /* default 4 */

    /* LoRa 'multi' demodulators setup */
    // lgw_reg_w(LGW_PREAMBLE_SYMB1_NB,10); /* default 10 */
    // lgw_reg_w(LGW_FREQ_TO_TIME_INVERT,29); /* default 29 */
    // lgw_reg_w(LGW_FRAME_SYNCH_GAIN,1); /* default 1 */
    // lgw_reg_w(LGW_SYNCH_DETECT_TH,1); /* default 1 */
    // lgw_reg_w(LGW_ZERO_PAD,0); /* default 0 */
    lgw_reg_w(LGW_SNR_AVG_CST,3); /* default 2 */
    if (lorawan_public) { /* LoRa network */
        lgw_reg_w(LGW_FRAME_SYNCH_PEAK1_POS,3); /* default 1 */
        lgw_reg_w(LGW_FRAME_SYNCH_PEAK2_POS,4); /* default 2 */
    } else { /* private network */
        lgw_reg_w(LGW_FRAME_SYNCH_PEAK1_POS,1); /* default 1 */
        lgw_reg_w(LGW_FRAME_SYNCH_PEAK2_POS,2); /* default 2 */
    }

    // lgw_reg_w(LGW_PREAMBLE_FINE_TIMING_GAIN,1); /* default 1 */
    // lgw_reg_w(LGW_ONLY_CRC_EN,1); /* default 1 */
    // lgw_reg_w(LGW_PAYLOAD_FINE_TIMING_GAIN,2); /* default 2 */
    // lgw_reg_w(LGW_TRACKING_INTEGRAL,0); /* default 0 */
    // lgw_reg_w(LGW_ADJUST_MODEM_START_OFFSET_RDX8,0); /* default 0 */
    // lgw_reg_w(LGW_ADJUST_MODEM_START_OFFSET_SF12_RDX4,4092); /* default 4092 */
    // lgw_reg_w(LGW_MAX_PAYLOAD_LEN,255); /* default 255 */

    /* LoRa standalone 'MBWSSF' demodulator setup */
    // lgw_reg_w(LGW_MBWSSF_PREAMBLE_SYMB1_NB,10); /* default 10 */
    // lgw_reg_w(LGW_MBWSSF_FREQ_TO_TIME_INVERT,29); /* default 29 */
    // lgw_reg_w(LGW_MBWSSF_FRAME_SYNCH_GAIN,1); /* default 1 */
    // lgw_reg_w(LGW_MBWSSF_SYNCH_DETECT_TH,1); /* default 1 */
    // lgw_reg_w(LGW_MBWSSF_ZERO_PAD,0); /* default 0 */
    if (lorawan_public) { /* LoRa network */
        lgw_reg_w(LGW_MBWSSF_FRAME_SYNCH_PEAK1_POS,3); /* default 1 */
        lgw_reg_w(LGW_MBWSSF_FRAME_SYNCH_PEAK2_POS,4); /* default 2 */
    } else {
        lgw_reg_w(LGW_MBWSSF_FRAME_SYNCH_PEAK1_POS,1); /* default 1 */
        lgw_reg_w(LGW_MBWSSF_FRAME_SYNCH_PEAK2_POS,2); /* default 2 */
    }
    // lgw_reg_w(LGW_MBWSSF_ONLY_CRC_EN,1); /* default 1 */
    // lgw_reg_w(LGW_MBWSSF_PAYLOAD_FINE_TIMING_GAIN,2); /* default 2 */
    // lgw_reg_w(LGW_MBWSSF_PREAMBLE_FINE_TIMING_GAIN,1); /* default 1 */
    // lgw_reg_w(LGW_MBWSSF_TRACKING_INTEGRAL,0); /* default 0 */
    // lgw_reg_w(LGW_MBWSSF_AGC_FREEZE_ON_DETECT,1); /* default 1 */

    /* Improvement of reference clock frequency error tolerance */
    lgw_reg_w(LGW_ADJUST_MODEM_START_OFFSET_RDX4, 1); /* default 0 */
    lgw_reg_w(LGW_ADJUST_MODEM_START_OFFSET_SF12_RDX4, 4094); /* default 4092 */
    lgw_reg_w(LGW_CORR_MAC_GAIN, 7); /* default 5 */

    /* FSK datapath setup */
    lgw_reg_w(LGW_FSK_RX_INVERT,1); /* default 0 */
    lgw_reg_w(LGW_FSK_MODEM_INVERT_IQ,1); /* default 0 */

    /* FSK demodulator setup */
    lgw_reg_w(LGW_FSK_RSSI_LENGTH,4); /* default 0 */
    lgw_reg_w(LGW_FSK_PKT_MODE,1); /* variable length, default 0 */
    lgw_reg_w(LGW_FSK_CRC_EN,1); /* default 0 */
    lgw_reg_w(LGW_FSK_DCFREE_ENC,2); /* default 0 */
    // lgw_reg_w(LGW_FSK_CRC_IBM,0); /* default 0 */
    lgw_reg_w(LGW_FSK_ERROR_OSR_TOL,10); /* default 0 */
    lgw_reg_w(LGW_FSK_PKT_LENGTH,255); /* max packet length in variable length mode */
    // lgw_reg_w(LGW_FSK_NODE_ADRS,0); /* default 0 */
    // lgw_reg_w(LGW_FSK_BROADCAST,0); /* default 0 */
    // lgw_reg_w(LGW_FSK_AUTO_AFC_ON,0); /* default 0 */
    lgw_reg_w(LGW_FSK_PATTERN_TIMEOUT_CFG,128); /* sync timeout (allow 8 bytes preamble + 8 bytes sync word, default 0 */

    /* TX general parameters */
    lgw_reg_w(LGW_TX_START_DELAY, TX_START_DELAY_DEFAULT); /* default 0 */

    /* TX LoRa */
    // lgw_reg_w(LGW_TX_MODE,0); /* default 0 */
    lgw_reg_w(LGW_TX_SWAP_IQ,1); /* "normal" polarity; default 0 */
    if (lorawan_public) { /* LoRa network */
        lgw_reg_w(LGW_TX_FRAME_SYNCH_PEAK1_POS,3); /* default 1 */
        lgw_reg_w(LGW_TX_FRAME_SYNCH_PEAK2_POS,4); /* default 2 */
    } else { /* Private network */
        lgw_reg_w(LGW_TX_FRAME_SYNCH_PEAK1_POS,1); /* default 1 */
        lgw_reg_w(LGW_TX_FRAME_SYNCH_PEAK2_POS,2); /* default 2 */
    }

    /* TX FSK */
    // lgw_reg_w(LGW_FSK_TX_GAUSSIAN_EN,1); /* default 1 */
    lgw_reg_w(LGW_FSK_TX_GAUSSIAN_SELECT_BT,2); /* Gaussian filter always on TX, default 0 */
    // lgw_reg_w(LGW_FSK_TX_PATTERN_EN,1); /* default 1 */
    // lgw_reg_w(LGW_FSK_TX_PREAMBLE_SEQ,0); /* default 0 */

    return;
}

/* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ */

int32_t lgw_bw_getval(int x) {
    switch (x) {
        case BW_500KHZ: return 500000;
        case BW_250KHZ: return 250000;
        case BW_125KHZ: return 125000;
        case BW_62K5HZ: return 62500;
        case BW_31K2HZ: return 31200;
        case BW_15K6HZ: return 15600;
        case BW_7K8HZ : return 7800;
        default: return -1;
    }
}

/* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ */

int32_t lgw_sf_getval(int x) {
    switch (x) {
        case DR_LORA_SF7: return 7;
        case DR_LORA_SF8: return 8;
        case DR_LORA_SF9: return 9;
        case DR_LORA_SF10: return 10;
        case DR_LORA_SF11: return 11;
        case DR_LORA_SF12: return 12;
        default: return -1;
    }
}

/* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ */

uint16_t lgw_get_tx_start_delay(bool tx_notch_enable, uint8_t bw) {
    float notch_delay_us = 0.0;
    float bw_delay_us = 0.0;
    float tx_start_delay;

    /* Notch filtering performed by FPGA adds a constant delay (group delay) that we need to compensate */
    if (tx_notch_enable) {
        notch_delay_us = lgw_fpga_get_tx_notch_delay();
    }

    /* Calibrated delay brought by SX1301 depending on signal bandwidth */
    switch (bw) {
        case BW_125KHZ:
            bw_delay_us = 1.5;
            break;
        case BW_500KHZ:
            /* Intended fall-through: it is the calibrated reference */
        default:
            break;
    }

    tx_start_delay = (float)TX_START_DELAY_DEFAULT - bw_delay_us - notch_delay_us;

    printf("INFO: tx_start_delay=%u (%f) - (%u, bw_delay=%f, notch_delay=%f)\n", (uint16_t)tx_start_delay, tx_start_delay, TX_START_DELAY_DEFAULT, bw_delay_us, notch_delay_us);

    return (uint16_t)tx_start_delay; /* keep truncating instead of rounding: better behaviour measured */
}

/* -------------------------------------------------------------------------- */
/* --- PUBLIC FUNCTIONS DEFINITION ------------------------------------------ */

int lgw_board_setconf(struct lgw_conf_board_s conf) {

    /* check if the concentrator is running */
    if (lgw_is_started == true) {
        DEBUG_MSG("ERROR: CONCENTRATOR IS RUNNING, STOP IT BEFORE TOUCHING CONFIGURATION\n");
        return LGW_HAL_ERROR;
    }

    /* set internal config according to parameters */
    lorawan_public = conf.lorawan_public;
    rf_clkout = conf.clksrc;
    if (fpga_supports_attenuator()) {
        max_tx_power = conf.max_tx_power;
        DEBUG_PRINTF("Note: board configuration; lorawan_public:%d, clksrc:%d, max_tx_power:%d\n", lorawan_public, rf_clkout, max_tx_power);        
    } else {
        DEBUG_PRINTF("Note: board configuration; lorawan_public:%d, clksrc:%d \n", lorawan_public, rf_clkout);
    }

    return LGW_HAL_SUCCESS;
}

/* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ */

int lgw_lbt_setconf(struct lgw_conf_lbt_s conf) {
    int x;

    /* check if the concentrator is running */
    if (lgw_is_started == true) {
        DEBUG_MSG("ERROR: CONCENTRATOR IS RUNNING, STOP IT BEFORE TOUCHING CONFIGURATION\n");
        return LGW_HAL_ERROR;
    }

    x = lbt_setconf(&conf);
    if (x != LGW_LBT_SUCCESS) {
        DEBUG_MSG("ERROR: Failed to configure concentrator for LBT\n");
        return LGW_HAL_ERROR;
    }

    return LGW_HAL_SUCCESS;
}

/* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ */

int lgw_rxrf_setconf(uint8_t rf_chain, struct lgw_conf_rxrf_s conf) {

    /* check if the concentrator is running */
    if (lgw_is_started == true) {
        DEBUG_MSG("ERROR: CONCENTRATOR IS RUNNING, STOP IT BEFORE TOUCHING CONFIGURATION\n");
        return LGW_HAL_ERROR;
    }

    /* check input range (segfault prevention) */
    if (rf_chain >= LGW_RF_CHAIN_NB) {
        DEBUG_MSG("ERROR: NOT A VALID RF_CHAIN NUMBER\n");
        return LGW_HAL_ERROR;
    }

    /* check if radio type is supported */
    if ((conf.type != LGW_RADIO_TYPE_SX1255) && (conf.type != LGW_RADIO_TYPE_SX1257)) {
        DEBUG_MSG("ERROR: NOT A VALID RADIO TYPE\n");
        return LGW_HAL_ERROR;
    }

    /* check if TX notch filter frequency is supported */
    if ((conf.tx_enable == true) && ((conf.tx_notch_freq < LGW_MIN_NOTCH_FREQ) || (conf.tx_notch_freq > LGW_MAX_NOTCH_FREQ))) {
        DEBUG_PRINTF("WARNING: NOT A VALID TX NOTCH FILTER FREQUENCY [%u..%u]Hz\n", LGW_MIN_NOTCH_FREQ, LGW_MAX_NOTCH_FREQ);
        conf.tx_notch_freq = 0;
    }

    /* set internal config according to parameters */
    rf_enable[rf_chain] = conf.enable;
    rf_rx_freq[rf_chain] = conf.freq_hz;
    rf_rssi_offset[rf_chain] = conf.rssi_offset;
    rf_radio_type[rf_chain] = conf.type;
    rf_tx_enable[rf_chain] = conf.tx_enable;
    rf_tx_notch_freq[rf_chain] = conf.tx_notch_freq;

    DEBUG_PRINTF("Note: rf_chain %d configuration; en:%d freq:%d rssi_offset:%f radio_type:%d tx_enable:%d tx_notch_freq:%u\n", rf_chain, rf_enable[rf_chain], rf_rx_freq[rf_chain], rf_rssi_offset[rf_chain], rf_radio_type[rf_chain], rf_tx_enable[rf_chain], rf_tx_notch_freq[rf_chain]);

    return LGW_HAL_SUCCESS;
}

/* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ */

int lgw_rxif_setconf(uint8_t if_chain, struct lgw_conf_rxif_s conf) {
    int32_t bw_hz;
    uint32_t rf_rx_bandwidth;

    /* check if the concentrator is running */
    if (lgw_is_started == true) {
        DEBUG_MSG("ERROR: CONCENTRATOR IS RUNNING, STOP IT BEFORE TOUCHING CONFIGURATION\n");
        return LGW_HAL_ERROR;
    }

    /* check input range (segfault prevention) */
    if (if_chain >= LGW_IF_CHAIN_NB) {
        DEBUG_PRINTF("ERROR: %d NOT A VALID IF_CHAIN NUMBER\n", if_chain);
        return LGW_HAL_ERROR;
    }

    /* if chain is disabled, don't care about most parameters */
    if (conf.enable == false) {
        if_enable[if_chain] = false;
        if_freq[if_chain] = 0;
        DEBUG_PRINTF("Note: if_chain %d disabled\n", if_chain);
        return LGW_HAL_SUCCESS;
    }

    /* check 'general' parameters */
    if (ifmod_config[if_chain] == IF_UNDEFINED) {
        DEBUG_PRINTF("ERROR: IF CHAIN %d NOT CONFIGURABLE\n", if_chain);
    }
    if (conf.rf_chain >= LGW_RF_CHAIN_NB) {
        DEBUG_MSG("ERROR: INVALID RF_CHAIN TO ASSOCIATE WITH A LORA_STD IF CHAIN\n");
        return LGW_HAL_ERROR;
    }
    /* check if IF frequency is optimal based on channel and radio bandwidths */
    switch (conf.bandwidth) {
        case BW_250KHZ:
            rf_rx_bandwidth = LGW_RF_RX_BANDWIDTH_250KHZ; /* radio bandwidth */
            break;
        case BW_500KHZ:
            rf_rx_bandwidth = LGW_RF_RX_BANDWIDTH_500KHZ; /* radio bandwidth */
            break;
        default:
            /* For 125KHz and below */
            rf_rx_bandwidth = LGW_RF_RX_BANDWIDTH_125KHZ; /* radio bandwidth */
            break;
    }
    bw_hz = lgw_bw_getval(conf.bandwidth); /* channel bandwidth */
    if ((conf.freq_hz + ((bw_hz==-1)?LGW_REF_BW:bw_hz)/2) > ((int32_t)rf_rx_bandwidth/2)) {
        DEBUG_PRINTF("ERROR: IF FREQUENCY %d TOO HIGH\n", conf.freq_hz);
        return LGW_HAL_ERROR;
    } else if ((conf.freq_hz - ((bw_hz==-1)?LGW_REF_BW:bw_hz)/2) < -((int32_t)rf_rx_bandwidth/2)) {
        DEBUG_PRINTF("ERROR: IF FREQUENCY %d TOO LOW\n", conf.freq_hz);
        return LGW_HAL_ERROR;
    }

    /* check parameters according to the type of IF chain + modem,
    fill default if necessary, and commit configuration if everything is OK */
    switch (ifmod_config[if_chain]) {
        case IF_LORA_STD:
            /* fill default parameters if needed */
            if (conf.bandwidth == BW_UNDEFINED) {
                conf.bandwidth = BW_250KHZ;
            }
            if (conf.datarate == DR_UNDEFINED) {
                conf.datarate = DR_LORA_SF9;
            }
            /* check BW & DR */
            if (!IS_LORA_BW(conf.bandwidth)) {
                DEBUG_MSG("ERROR: BANDWIDTH NOT SUPPORTED BY LORA_STD IF CHAIN\n");
                return LGW_HAL_ERROR;
            }
            if (!IS_LORA_STD_DR(conf.datarate)) {
                DEBUG_MSG("ERROR: DATARATE NOT SUPPORTED BY LORA_STD IF CHAIN\n");
                return LGW_HAL_ERROR;
            }
            /* set internal configuration  */
            if_enable[if_chain] = conf.enable;
            if_rf_chain[if_chain] = conf.rf_chain;
            if_freq[if_chain] = conf.freq_hz;
            lora_rx_bw = conf.bandwidth;
            lora_rx_sf = (uint8_t)(DR_LORA_MULTI & conf.datarate); /* filter SF out of the 7-12 range */
            if (SET_PPM_ON(conf.bandwidth, conf.datarate)) {
                lora_rx_ppm_offset = true;
            } else {
                lora_rx_ppm_offset = false;
            }

            DEBUG_PRINTF("Note: LoRa 'std' if_chain %d configuration; en:%d freq:%d bw:%d dr:%d\n", if_chain, if_enable[if_chain], if_freq[if_chain], lora_rx_bw, lora_rx_sf);
            break;

        case IF_LORA_MULTI:
            /* fill default parameters if needed */
            if (conf.bandwidth == BW_UNDEFINED) {
                conf.bandwidth = BW_125KHZ;
            }
            if (conf.datarate == DR_UNDEFINED) {
                conf.datarate = DR_LORA_MULTI;
            }
            /* check BW & DR */
            if (conf.bandwidth != BW_125KHZ) {
                DEBUG_MSG("ERROR: BANDWIDTH NOT SUPPORTED BY LORA_MULTI IF CHAIN\n");
                return LGW_HAL_ERROR;
            }
            if (!IS_LORA_MULTI_DR(conf.datarate)) {
                DEBUG_MSG("ERROR: DATARATE(S) NOT SUPPORTED BY LORA_MULTI IF CHAIN\n");
                return LGW_HAL_ERROR;
            }
            /* set internal configuration  */
            if_enable[if_chain] = conf.enable;
            if_rf_chain[if_chain] = conf.rf_chain;
            if_freq[if_chain] = conf.freq_hz;
            lora_multi_sfmask[if_chain] = (uint8_t)(DR_LORA_MULTI & conf.datarate); /* filter SF out of the 7-12 range */

            DEBUG_PRINTF("Note: LoRa 'multi' if_chain %d configuration; en:%d freq:%d SF_mask:0x%02x\n", if_chain, if_enable[if_chain], if_freq[if_chain], lora_multi_sfmask[if_chain]);
            break;

        case IF_FSK_STD:
            /* fill default parameters if needed */
            if (conf.bandwidth == BW_UNDEFINED) {
                conf.bandwidth = BW_250KHZ;
            }
            if (conf.datarate == DR_UNDEFINED) {
                conf.datarate = 64000; /* default datarate */
            }
            /* check BW & DR */
            if(!IS_FSK_BW(conf.bandwidth)) {
                DEBUG_MSG("ERROR: BANDWIDTH NOT SUPPORTED BY FSK IF CHAIN\n");
                return LGW_HAL_ERROR;
            }
            if(!IS_FSK_DR(conf.datarate)) {
                DEBUG_MSG("ERROR: DATARATE NOT SUPPORTED BY FSK IF CHAIN\n");
                return LGW_HAL_ERROR;
            }
            /* set internal configuration  */
            if_enable[if_chain] = conf.enable;
            if_rf_chain[if_chain] = conf.rf_chain;
            if_freq[if_chain] = conf.freq_hz;
            fsk_rx_bw = conf.bandwidth;
            fsk_rx_dr = conf.datarate;
            if (conf.sync_word > 0) {
                fsk_sync_word_size = conf.sync_word_size;
                fsk_sync_word = conf.sync_word;
            }
            DEBUG_PRINTF("Note: FSK if_chain %d configuration; en:%d freq:%d bw:%d dr:%d (%d real dr) sync:0x%0*llX\n", if_chain, if_enable[if_chain], if_freq[if_chain], fsk_rx_bw, fsk_rx_dr, LGW_XTAL_FREQU/(LGW_XTAL_FREQU/fsk_rx_dr), 2*fsk_sync_word_size, fsk_sync_word);
            break;

        default:
            DEBUG_PRINTF("ERROR: IF CHAIN %d TYPE NOT SUPPORTED\n", if_chain);
            return LGW_HAL_ERROR;
    }

    return LGW_HAL_SUCCESS;
}

/* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ */

int lgw_txgain_setconf(struct lgw_tx_gain_lut_s *conf) {
    int i;

    /* Check LUT size */
    if ((conf->size < 1) || (conf->size > TX_GAIN_LUT_SIZE_MAX)) {
        DEBUG_PRINTF("ERROR: TX gain LUT must have at least one entry and  maximum %d entries\n", TX_GAIN_LUT_SIZE_MAX);
        return LGW_HAL_ERROR;
    }

    txgain_lut.size = conf->size;

    for (i = 0; i < txgain_lut.size; i++) {
        /* Check gain range */
        if (conf->lut[i].dig_gain > 3) {
            DEBUG_MSG("ERROR: TX gain LUT: SX1301 digital gain must be between 0 and 3\n");
            return LGW_HAL_ERROR;
        }
        if (conf->lut[i].dac_gain != 3) {
            DEBUG_MSG("ERROR: TX gain LUT: SX1257 DAC gains != 3 are not supported\n");
            return LGW_HAL_ERROR;
        }
        if (conf->lut[i].mix_gain > 15) {
            DEBUG_MSG("ERROR: TX gain LUT: SX1257 mixer gain must not exceed 15\n");
            return LGW_HAL_ERROR;
        } else if (conf->lut[i].mix_gain < 8) {
            DEBUG_MSG("ERROR: TX gain LUT: SX1257 mixer gains < 8 are not supported\n");
            return LGW_HAL_ERROR;
        }
        if (conf->lut[i].pa_gain > 3) {
            DEBUG_MSG("ERROR: TX gain LUT: External PA gain must not exceed 3\n");
            return LGW_HAL_ERROR;
        }

        /* Set internal LUT */
        txgain_lut.lut[i].dig_gain = conf->lut[i].dig_gain;
        txgain_lut.lut[i].dac_gain = conf->lut[i].dac_gain;
        txgain_lut.lut[i].mix_gain = conf->lut[i].mix_gain;
        txgain_lut.lut[i].pa_gain  = conf->lut[i].pa_gain;
        txgain_lut.lut[i].rf_power = conf->lut[i].rf_power;
    }

    return LGW_HAL_SUCCESS;
}

/* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ */

int lgw_start(void) {
    int i, err;
    int reg_stat;
    unsigned x;
    uint8_t radio_select;
    int32_t read_val;
    uint8_t load_val;
    uint8_t fw_version;
    uint8_t cal_cmd;
    uint16_t cal_time;
    uint8_t cal_status;

    uint64_t fsk_sync_word_reg;

    if (lgw_is_started == true) {
        DEBUG_MSG("Note: LoRa concentrator already started, restarting it now\n");
    }
    reg_stat = lgw_connect(false, rf_tx_notch_freq[rf_tx_enable[1]?1:0]);
    if (reg_stat == LGW_REG_ERROR) {
        DEBUG_MSG("ERROR: FAIL TO CONNECT BOARD\n");
        return LGW_HAL_ERROR;
    }

    /* reset the registers (also shuts the radios down) */
    lgw_soft_reset();

    /* gate clocks */
    lgw_reg_w(LGW_GLOBAL_EN, 0);
    lgw_reg_w(LGW_CLK32M_EN, 0);

    /* switch on and reset the radios (also starts the 32 MHz XTAL) */
    lgw_reg_w(LGW_RADIO_A_EN,1);
    lgw_reg_w(LGW_RADIO_B_EN,1);
    wait_ms(500); /* TODO: optimize */
    lgw_reg_w(LGW_RADIO_RST,1);
    wait_ms(5);
    lgw_reg_w(LGW_RADIO_RST,0);

    /* setup the radios */
    err = lgw_setup_sx125x(0, rf_clkout, rf_enable[0], rf_radio_type[0], rf_rx_freq[0]);
    if (err != 0) {
        DEBUG_MSG("ERROR: Failed to setup sx125x radio for RF chain 0\n");
        return LGW_HAL_ERROR;
    }
    err = lgw_setup_sx125x(1, rf_clkout, rf_enable[1], rf_radio_type[1], rf_rx_freq[1]);
    if (err != 0) {
        DEBUG_MSG("ERROR: Failed to setup sx125x radio for RF chain 0\n");
        return LGW_HAL_ERROR;
    }

    /* gives AGC control of GPIOs to enable Tx external digital filter */
    lgw_reg_w(LGW_GPIO_MODE,31); /* Set all GPIOs as output */
    lgw_reg_w(LGW_GPIO_SELECT_OUTPUT,2);

    /* Configure LBT */
    if (lbt_is_enabled() == true) {
        lgw_reg_w(LGW_CLK32M_EN, 1);
        i = lbt_setup();
        if (i != LGW_LBT_SUCCESS) {
            DEBUG_MSG("ERROR: lbt_setup() did not return SUCCESS\n");
            return LGW_HAL_ERROR;
        }

        /* Start SX1301 counter and LBT FSM at the same time to be in sync */
        lgw_reg_w(LGW_CLK32M_EN, 0);
        i = lbt_start();
        if (i != LGW_LBT_SUCCESS) {
            DEBUG_MSG("ERROR: lbt_start() did not return SUCCESS\n");
            return LGW_HAL_ERROR;
        }
    }

    /* Enable clocks */
    lgw_reg_w(LGW_GLOBAL_EN, 1);
    lgw_reg_w(LGW_CLK32M_EN, 1);

    /* GPIOs table :
    DGPIO0 -> N/A
    DGPIO1 -> N/A
    DGPIO2 -> N/A
    DGPIO3 -> TX digital filter ON
    DGPIO4 -> TX ON
    */

    /* select calibration command */
    cal_cmd = 0;
    cal_cmd |= rf_enable[0] ? 0x01 : 0x00; /* Bit 0: Calibrate Rx IQ mismatch compensation on radio A */
    cal_cmd |= rf_enable[1] ? 0x02 : 0x00; /* Bit 1: Calibrate Rx IQ mismatch compensation on radio B */
    cal_cmd |= (rf_enable[0] && rf_tx_enable[0]) ? 0x04 : 0x00; /* Bit 2: Calibrate Tx DC offset on radio A */
    cal_cmd |= (rf_enable[1] && rf_tx_enable[1]) ? 0x08 : 0x00; /* Bit 3: Calibrate Tx DC offset on radio B */
    cal_cmd |= 0x10; /* Bit 4: 0: calibrate with DAC gain=2, 1: with DAC gain=3 (use 3) */

    switch (rf_radio_type[0]) { /* we assume that there is only one radio type on the board */
        case LGW_RADIO_TYPE_SX1255:
            cal_cmd |= 0x20; /* Bit 5: 0: SX1257, 1: SX1255 */
            break;
        case LGW_RADIO_TYPE_SX1257:
            cal_cmd |= 0x00; /* Bit 5: 0: SX1257, 1: SX1255 */
            break;
        default:
            DEBUG_PRINTF("ERROR: UNEXPECTED VALUE %d FOR RADIO TYPE\n", rf_radio_type[0]);
            break;
    }

    cal_cmd |= 0x00; /* Bit 6-7: Board type 0: ref, 1: FPGA, 3: board X */
    cal_time = 2300; /* measured between 2.1 and 2.2 sec, because 1 TX only */

    /* Load the calibration firmware  */
    load_firmware(MCU_AGC, cal_firmware, MCU_AGC_FW_BYTE);
    lgw_reg_w(LGW_FORCE_HOST_RADIO_CTRL, 0); /* gives to AGC MCU the control of the radios */
    lgw_reg_w(LGW_RADIO_SELECT, cal_cmd); /* send calibration configuration word */
    lgw_reg_w(LGW_MCU_RST_1, 0);

    /* Check firmware version */
    lgw_reg_w(LGW_DBG_AGC_MCU_RAM_ADDR, FW_VERSION_ADDR);
    lgw_reg_r(LGW_DBG_AGC_MCU_RAM_DATA, &read_val);
    fw_version = (uint8_t)read_val;
    if (fw_version != FW_VERSION_CAL) {
        printf("ERROR: Version of calibration firmware not expected, actual:%d expected:%d\n", fw_version, FW_VERSION_CAL);
        return -1;
    }

    lgw_reg_w(LGW_PAGE_REG, 3); /* Calibration will start on this condition as soon as MCU can talk to concentrator registers */
    lgw_reg_w(LGW_EMERGENCY_FORCE_HOST_CTRL, 0); /* Give control of concentrator registers to MCU */

    /* Wait for calibration to end */
    DEBUG_PRINTF("Note: calibration started (time: %u ms)\n", cal_time);
    wait_ms(cal_time); /* Wait for end of calibration */
    lgw_reg_w(LGW_EMERGENCY_FORCE_HOST_CTRL, 1); /* Take back control */

    /* Get calibration status */
    lgw_reg_r(LGW_MCU_AGC_STATUS, &read_val);
    cal_status = (uint8_t)read_val;
    /*
        bit 7: calibration finished
        bit 0: could access SX1301 registers
        bit 1: could access radio A registers
        bit 2: could access radio B registers
        bit 3: radio A RX image rejection successful
        bit 4: radio B RX image rejection successful
        bit 5: radio A TX DC Offset correction successful
        bit 6: radio B TX DC Offset correction successful
    */
    if ((cal_status & 0x81) != 0x81) {
        DEBUG_PRINTF("ERROR: CALIBRATION FAILURE (STATUS = %u)\n", cal_status);
        return LGW_HAL_ERROR;
    } else {
        DEBUG_PRINTF("Note: calibration finished (status = %u)\n", cal_status);
    }
    if (rf_enable[0] && ((cal_status & 0x02) == 0)) {
        DEBUG_MSG("WARNING: calibration could not access radio A\n");
    }
    if (rf_enable[1] && ((cal_status & 0x04) == 0)) {
        DEBUG_MSG("WARNING: calibration could not access radio B\n");
    }
    if (rf_enable[0] && ((cal_status & 0x08) == 0)) {
        DEBUG_MSG("WARNING: problem in calibration of radio A for image rejection\n");
    }
    if (rf_enable[1] && ((cal_status & 0x10) == 0)) {
        DEBUG_MSG("WARNING: problem in calibration of radio B for image rejection\n");
    }
    if (rf_enable[0] && rf_tx_enable[0] && ((cal_status & 0x20) == 0)) {
        DEBUG_MSG("WARNING: problem in calibration of radio A for TX DC offset\n");
    }
    if (rf_enable[1] && rf_tx_enable[1] && ((cal_status & 0x40) == 0)) {
        DEBUG_MSG("WARNING: problem in calibration of radio B for TX DC offset\n");
    }

    /* Get TX DC offset values */
    for(i=0; i<=7; ++i) {
        lgw_reg_w(LGW_DBG_AGC_MCU_RAM_ADDR, 0xA0+i);
        lgw_reg_r(LGW_DBG_AGC_MCU_RAM_DATA, &read_val);
        cal_offset_a_i[i] = (int8_t)read_val;
        lgw_reg_w(LGW_DBG_AGC_MCU_RAM_ADDR, 0xA8+i);
        lgw_reg_r(LGW_DBG_AGC_MCU_RAM_DATA, &read_val);
        cal_offset_a_q[i] = (int8_t)read_val;
        lgw_reg_w(LGW_DBG_AGC_MCU_RAM_ADDR, 0xB0+i);
        lgw_reg_r(LGW_DBG_AGC_MCU_RAM_DATA, &read_val);
        cal_offset_b_i[i] = (int8_t)read_val;
        lgw_reg_w(LGW_DBG_AGC_MCU_RAM_ADDR, 0xB8+i);
        lgw_reg_r(LGW_DBG_AGC_MCU_RAM_DATA, &read_val);
        cal_offset_b_q[i] = (int8_t)read_val;
    }

    /* load adjusted parameters */
    lgw_constant_adjust();

    /* Sanity check for RX frequency */
    if (rf_rx_freq[0] == 0) {
        DEBUG_MSG("ERROR: wrong configuration, rf_rx_freq[0] is not set\n");
        return LGW_HAL_ERROR;
    }

    /* Freq-to-time-drift calculation */
    x = 4096000000 / (rf_rx_freq[0] >> 1); /* dividend: (4*2048*1000000) >> 1, rescaled to avoid 32b overflow */
    x = ( x > 63 ) ? 63 : x; /* saturation */
    lgw_reg_w(LGW_FREQ_TO_TIME_DRIFT, x); /* default 9 */

    x = 4096000000 / (rf_rx_freq[0] >> 3); /* dividend: (16*2048*1000000) >> 3, rescaled to avoid 32b overflow */
    x = ( x > 63 ) ? 63 : x; /* saturation */
    lgw_reg_w(LGW_MBWSSF_FREQ_TO_TIME_DRIFT, x); /* default 36 */

    /* configure LoRa 'multi' demodulators aka. LoRa 'sensor' channels (IF0-3) */
    radio_select = 0; /* IF mapping to radio A/B (per bit, 0=A, 1=B) */
    for(i=0; i<LGW_MULTI_NB; ++i) {
        radio_select += (if_rf_chain[i] == 1 ? 1 << i : 0); /* transform bool array into binary word */
    }
    /*
    lgw_reg_w(LGW_RADIO_SELECT, radio_select);

    LGW_RADIO_SELECT is used for communication with the firmware, "radio_select"
    will be loaded in LGW_RADIO_SELECT at the end of start procedure.
    */

    lgw_reg_w(LGW_IF_FREQ_0, IF_HZ_TO_REG(if_freq[0])); /* default -384 */
    lgw_reg_w(LGW_IF_FREQ_1, IF_HZ_TO_REG(if_freq[1])); /* default -128 */
    lgw_reg_w(LGW_IF_FREQ_2, IF_HZ_TO_REG(if_freq[2])); /* default 128 */
    lgw_reg_w(LGW_IF_FREQ_3, IF_HZ_TO_REG(if_freq[3])); /* default 384 */
    lgw_reg_w(LGW_IF_FREQ_4, IF_HZ_TO_REG(if_freq[4])); /* default -384 */
    lgw_reg_w(LGW_IF_FREQ_5, IF_HZ_TO_REG(if_freq[5])); /* default -128 */
    lgw_reg_w(LGW_IF_FREQ_6, IF_HZ_TO_REG(if_freq[6])); /* default 128 */
    lgw_reg_w(LGW_IF_FREQ_7, IF_HZ_TO_REG(if_freq[7])); /* default 384 */

    lgw_reg_w(LGW_CORR0_DETECT_EN, (if_enable[0] == true) ? lora_multi_sfmask[0] : 0); /* default 0 */
    lgw_reg_w(LGW_CORR1_DETECT_EN, (if_enable[1] == true) ? lora_multi_sfmask[1] : 0); /* default 0 */
    lgw_reg_w(LGW_CORR2_DETECT_EN, (if_enable[2] == true) ? lora_multi_sfmask[2] : 0); /* default 0 */
    lgw_reg_w(LGW_CORR3_DETECT_EN, (if_enable[3] == true) ? lora_multi_sfmask[3] : 0); /* default 0 */
    lgw_reg_w(LGW_CORR4_DETECT_EN, (if_enable[4] == true) ? lora_multi_sfmask[4] : 0); /* default 0 */
    lgw_reg_w(LGW_CORR5_DETECT_EN, (if_enable[5] == true) ? lora_multi_sfmask[5] : 0); /* default 0 */
    lgw_reg_w(LGW_CORR6_DETECT_EN, (if_enable[6] == true) ? lora_multi_sfmask[6] : 0); /* default 0 */
    lgw_reg_w(LGW_CORR7_DETECT_EN, (if_enable[7] == true) ? lora_multi_sfmask[7] : 0); /* default 0 */

    lgw_reg_w(LGW_PPM_OFFSET, 0x60); /* as the threshold is 16ms, use 0x60 to enable ppm_offset for SF12 and SF11 @125kHz*/

    lgw_reg_w(LGW_CONCENTRATOR_MODEM_ENABLE, 1); /* default 0 */

    /* configure LoRa 'stand-alone' modem (IF8) */
    lgw_reg_w(LGW_IF_FREQ_8, IF_HZ_TO_REG(if_freq[8])); /* MBWSSF modem (default 0) */
    if (if_enable[8] == true) {
        lgw_reg_w(LGW_MBWSSF_RADIO_SELECT, if_rf_chain[8]);
        switch(lora_rx_bw) {
            case BW_125KHZ: lgw_reg_w(LGW_MBWSSF_MODEM_BW, 0); break;
            case BW_250KHZ: lgw_reg_w(LGW_MBWSSF_MODEM_BW, 1); break;
            case BW_500KHZ: lgw_reg_w(LGW_MBWSSF_MODEM_BW, 2); break;
            default:
                DEBUG_PRINTF("ERROR: UNEXPECTED VALUE %d IN SWITCH STATEMENT\n", lora_rx_bw);
                return LGW_HAL_ERROR;
        }
        switch(lora_rx_sf) {
            case DR_LORA_SF7: lgw_reg_w(LGW_MBWSSF_RATE_SF, 7); break;
            case DR_LORA_SF8: lgw_reg_w(LGW_MBWSSF_RATE_SF, 8); break;
            case DR_LORA_SF9: lgw_reg_w(LGW_MBWSSF_RATE_SF, 9); break;
            case DR_LORA_SF10: lgw_reg_w(LGW_MBWSSF_RATE_SF, 10); break;
            case DR_LORA_SF11: lgw_reg_w(LGW_MBWSSF_RATE_SF, 11); break;
            case DR_LORA_SF12: lgw_reg_w(LGW_MBWSSF_RATE_SF, 12); break;
            default:
                DEBUG_PRINTF("ERROR: UNEXPECTED VALUE %d IN SWITCH STATEMENT\n", lora_rx_sf);
                return LGW_HAL_ERROR;
        }
        lgw_reg_w(LGW_MBWSSF_PPM_OFFSET, lora_rx_ppm_offset); /* default 0 */
        lgw_reg_w(LGW_MBWSSF_MODEM_ENABLE, 1); /* default 0 */
    } else {
        lgw_reg_w(LGW_MBWSSF_MODEM_ENABLE, 0);
    }

    /* configure FSK modem (IF9) */
    lgw_reg_w(LGW_IF_FREQ_9, IF_HZ_TO_REG(if_freq[9])); /* FSK modem, default 0 */
    lgw_reg_w(LGW_FSK_PSIZE, fsk_sync_word_size-1);
    lgw_reg_w(LGW_FSK_TX_PSIZE, fsk_sync_word_size-1);
    fsk_sync_word_reg = fsk_sync_word << (8 * (8 - fsk_sync_word_size));
    lgw_reg_w(LGW_FSK_REF_PATTERN_LSB, (uint32_t)(0xFFFFFFFF & fsk_sync_word_reg));
    lgw_reg_w(LGW_FSK_REF_PATTERN_MSB, (uint32_t)(0xFFFFFFFF & (fsk_sync_word_reg >> 32)));
    if (if_enable[9] == true) {
        lgw_reg_w(LGW_FSK_RADIO_SELECT, if_rf_chain[9]);
        lgw_reg_w(LGW_FSK_BR_RATIO, LGW_XTAL_FREQU/fsk_rx_dr); /* setting the dividing ratio for datarate */
        lgw_reg_w(LGW_FSK_CH_BW_EXPO, fsk_rx_bw);
        lgw_reg_w(LGW_FSK_MODEM_ENABLE, 1); /* default 0 */
    } else {
        lgw_reg_w(LGW_FSK_MODEM_ENABLE, 0);
    }

    /* Load firmware */
    load_firmware(MCU_ARB, arb_firmware, MCU_ARB_FW_BYTE);
    load_firmware(MCU_AGC, agc_firmware, MCU_AGC_FW_BYTE);

    /* gives the AGC MCU control over radio, RF front-end and filter gain */
    lgw_reg_w(LGW_FORCE_HOST_RADIO_CTRL, 0);
    lgw_reg_w(LGW_FORCE_HOST_FE_CTRL, 0);
    lgw_reg_w(LGW_FORCE_DEC_FILTER_GAIN, 0);

    /* Get MCUs out of reset */
    lgw_reg_w(LGW_RADIO_SELECT, 0); /* MUST not be = to 1 or 2 at firmware init */
    lgw_reg_w(LGW_MCU_RST_0, 0);
    lgw_reg_w(LGW_MCU_RST_1, 0);

    /* Check firmware version */
    lgw_reg_w(LGW_DBG_AGC_MCU_RAM_ADDR, FW_VERSION_ADDR);
    lgw_reg_r(LGW_DBG_AGC_MCU_RAM_DATA, &read_val);
    fw_version = (uint8_t)read_val;
    if (fw_version != FW_VERSION_AGC) {
        DEBUG_PRINTF("ERROR: Version of AGC firmware not expected, actual:%d expected:%d\n", fw_version, FW_VERSION_AGC);
        return LGW_HAL_ERROR;
    }
    lgw_reg_w(LGW_DBG_ARB_MCU_RAM_ADDR, FW_VERSION_ADDR);
    lgw_reg_r(LGW_DBG_ARB_MCU_RAM_DATA, &read_val);
    fw_version = (uint8_t)read_val;
    if (fw_version != FW_VERSION_ARB) {
        DEBUG_PRINTF("ERROR: Version of arbiter firmware not expected, actual:%d expected:%d\n", fw_version, FW_VERSION_ARB);
        return LGW_HAL_ERROR;
    }

    DEBUG_MSG("Info: Initialising AGC firmware...\n");
    wait_ms(1);

    lgw_reg_r(LGW_MCU_AGC_STATUS, &read_val);
    if (read_val != 0x10) {
        DEBUG_PRINTF("ERROR: AGC FIRMWARE INITIALIZATION FAILURE, STATUS 0x%02X\n", (uint8_t)read_val);
        return LGW_HAL_ERROR;
    }

    /* Update Tx gain LUT and start AGC */
    for (i = 0; i < txgain_lut.size; ++i) {
        lgw_reg_w(LGW_RADIO_SELECT, AGC_CMD_WAIT); /* start a transaction */
        wait_ms(1);
        load_val = txgain_lut.lut[i].mix_gain + (16 * txgain_lut.lut[i].dac_gain) + (64 * txgain_lut.lut[i].pa_gain);
        lgw_reg_w(LGW_RADIO_SELECT, load_val);
        wait_ms(1);
        lgw_reg_r(LGW_MCU_AGC_STATUS, &read_val);
        if (read_val != (0x30 + i)) {
            DEBUG_PRINTF("ERROR: AGC FIRMWARE INITIALIZATION FAILURE, STATUS 0x%02X\n", (uint8_t)read_val);
            return LGW_HAL_ERROR;
        }
    }
    /* As the AGC fw is waiting for 16 entries, we need to abort the transaction if we get less entries */
    if (txgain_lut.size < TX_GAIN_LUT_SIZE_MAX) {
        lgw_reg_w(LGW_RADIO_SELECT, AGC_CMD_WAIT);
        wait_ms(1);
        load_val = AGC_CMD_ABORT;
        lgw_reg_w(LGW_RADIO_SELECT, load_val);
        wait_ms(1);
        lgw_reg_r(LGW_MCU_AGC_STATUS, &read_val);
        if (read_val != 0x30) {
            DEBUG_PRINTF("ERROR: AGC FIRMWARE INITIALIZATION FAILURE, STATUS 0x%02X\n", (uint8_t)read_val);
            return LGW_HAL_ERROR;
        }
    }

    /* Load Tx freq MSBs (always 3 if f > 768 for SX1257 or f > 384 for SX1255 */
    lgw_reg_w(LGW_RADIO_SELECT, AGC_CMD_WAIT);
    wait_ms(1);
    lgw_reg_w(LGW_RADIO_SELECT, 3);
    wait_ms(1);
    lgw_reg_r(LGW_MCU_AGC_STATUS, &read_val);
    if (read_val != 0x33) {
        DEBUG_PRINTF("ERROR: AGC FIRMWARE INITIALIZATION FAILURE, STATUS 0x%02X\n", (uint8_t)read_val);
        return LGW_HAL_ERROR;
    }

    /* Load chan_select firmware option */
    lgw_reg_w(LGW_RADIO_SELECT, AGC_CMD_WAIT);
    wait_ms(1);
    lgw_reg_w(LGW_RADIO_SELECT, 0);
    wait_ms(1);
    lgw_reg_r(LGW_MCU_AGC_STATUS, &read_val);
    if (read_val != 0x30) {
        DEBUG_PRINTF("ERROR: AGC FIRMWARE INITIALIZATION FAILURE, STATUS 0x%02X\n", (uint8_t)read_val);
        return LGW_HAL_ERROR;
    }

    /* End AGC firmware init and check status */
    lgw_reg_w(LGW_RADIO_SELECT, AGC_CMD_WAIT);
    wait_ms(1);
    lgw_reg_w(LGW_RADIO_SELECT, radio_select); /* Load intended value of RADIO_SELECT */
    wait_ms(1);
    DEBUG_MSG("Info: putting back original RADIO_SELECT value\n");
    lgw_reg_r(LGW_MCU_AGC_STATUS, &read_val);
    if (read_val != 0x40) {
        DEBUG_PRINTF("ERROR: AGC FIRMWARE INITIALIZATION FAILURE, STATUS 0x%02X\n", (uint8_t)read_val);
        return LGW_HAL_ERROR;
    }

    /* enable GPS event capture */
    lgw_reg_w(LGW_GPS_EN, 1);

    /* */
    if (lbt_is_enabled() == true) {
        printf("INFO: Configuring LBT, this may take few seconds, please wait...\n");
        wait_ms(8400);
    }

    lgw_is_started = true;
    return LGW_HAL_SUCCESS;
}

/* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ */

int lgw_stop(void) {
    lgw_soft_reset();
    lgw_disconnect();

    lgw_is_started = false;
    return LGW_HAL_SUCCESS;
}

/* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ */

int lgw_receive(uint8_t max_pkt, struct lgw_pkt_rx_s *pkt_data) {
    int nb_pkt_fetch; /* loop variable and return value */
    struct lgw_pkt_rx_s *p; /* pointer to the current structure in the struct array */
    uint8_t buff[255+RX_METADATA_NB]; /* buffer to store the result of SPI read bursts */
    unsigned sz; /* size of the payload, uses to address metadata */
    int ifmod; /* type of if_chain/modem a packet was received by */
    int stat_fifo; /* the packet status as indicated in the FIFO */
    uint32_t raw_timestamp; /* timestamp when internal 'RX finished' was triggered */
    uint32_t delay_x, delay_y, delay_z; /* temporary variable for timestamp offset calculation */
    uint32_t timestamp_correction; /* correction to account for processing delay */
    uint32_t sf, cr, bw_pow, crc_en, ppm; /* used to calculate timestamp correction */

    /* check if the concentrator is running */
    if (lgw_is_started == false) {
        DEBUG_MSG("ERROR: CONCENTRATOR IS NOT RUNNING, START IT BEFORE RECEIVING\n");
        return LGW_HAL_ERROR;
    }

    /* check input variables */
    if ((max_pkt <= 0) || (max_pkt > LGW_PKT_FIFO_SIZE)) {
        DEBUG_PRINTF("ERROR: %d = INVALID MAX NUMBER OF PACKETS TO FETCH\n", max_pkt);
        return LGW_HAL_ERROR;
    }
    CHECK_NULL(pkt_data);

    /* Initialize buffer */
    memset (buff, 0, sizeof buff);

    /* iterate max_pkt times at most */
    for (nb_pkt_fetch = 0; nb_pkt_fetch < max_pkt; ++nb_pkt_fetch) {

        /* point to the proper struct in the struct array */
        p = &pkt_data[nb_pkt_fetch];

        /* fetch all the RX FIFO data */
        lgw_reg_rb(LGW_RX_PACKET_DATA_FIFO_NUM_STORED, buff, 5);
        /* 0:   number of packets available in RX data buffer */
        /* 1,2: start address of the current packet in RX data buffer */
        /* 3:   CRC status of the current packet */
        /* 4:   size of the current packet payload in byte */

        /* how many packets are in the RX buffer ? Break if zero */
        if (buff[0] == 0) {
            break; /* no more packets to fetch, exit out of FOR loop */
        }

        /* sanity check */
        if (buff[0] > LGW_PKT_FIFO_SIZE) {
            DEBUG_PRINTF("WARNING: %u = INVALID NUMBER OF PACKETS TO FETCH, ABORTING\n", buff[0]);
            break;
        }

        DEBUG_PRINTF("FIFO content: %x %x %x %x %x\n", buff[0], buff[1], buff[2], buff[3], buff[4]);

        p->size = buff[4];
        sz = p->size;
        stat_fifo = buff[3]; /* will be used later, need to save it before overwriting buff */

        /* get payload + metadata */
        lgw_reg_rb(LGW_RX_DATA_BUF_DATA, buff, sz+RX_METADATA_NB);

        /* copy payload to result struct */
        memcpy((void *)p->payload, (void *)buff, sz);

        /* process metadata */
        p->if_chain = buff[sz+0];
        if (p->if_chain >= LGW_IF_CHAIN_NB) {
            DEBUG_PRINTF("WARNING: %u NOT A VALID IF_CHAIN NUMBER, ABORTING\n", p->if_chain);
            break;
        }
        ifmod = ifmod_config[p->if_chain];
        DEBUG_PRINTF("[%d %d]\n", p->if_chain, ifmod);

        p->rf_chain = (uint8_t)if_rf_chain[p->if_chain];
        p->freq_hz = (uint32_t)((int32_t)rf_rx_freq[p->rf_chain] + if_freq[p->if_chain]);
        p->rssi = (float)buff[sz+5] + rf_rssi_offset[p->rf_chain];

        if ((ifmod == IF_LORA_MULTI) || (ifmod == IF_LORA_STD)) {
            DEBUG_MSG("Note: LoRa packet\n");
            switch(stat_fifo & 0x07) {
                case 5:
                    p->status = STAT_CRC_OK;
                    crc_en = 1;
                    break;
                case 7:
                    p->status = STAT_CRC_BAD;
                    crc_en = 1;
                    break;
                case 1:
                    p->status = STAT_NO_CRC;
                    crc_en = 0;
                    break;
                default:
                    p->status = STAT_UNDEFINED;
                    crc_en = 0;
            }
            p->modulation = MOD_LORA;
            p->snr = ((float)((int8_t)buff[sz+2]))/4;
            p->snr_min = ((float)((int8_t)buff[sz+3]))/4;
            p->snr_max = ((float)((int8_t)buff[sz+4]))/4;
            if (ifmod == IF_LORA_MULTI) {
                p->bandwidth = BW_125KHZ; /* fixed in hardware */
            } else {
                p->bandwidth = lora_rx_bw; /* get the parameter from the config variable */
            }
            sf = (buff[sz+1] >> 4) & 0x0F;
            switch (sf) {
                case 7: p->datarate = DR_LORA_SF7; break;
                case 8: p->datarate = DR_LORA_SF8; break;
                case 9: p->datarate = DR_LORA_SF9; break;
                case 10: p->datarate = DR_LORA_SF10; break;
                case 11: p->datarate = DR_LORA_SF11; break;
                case 12: p->datarate = DR_LORA_SF12; break;
                default: p->datarate = DR_UNDEFINED;
            }
            cr = (buff[sz+1] >> 1) & 0x07;
            switch (cr) {
                case 1: p->coderate = CR_LORA_4_5; break;
                case 2: p->coderate = CR_LORA_4_6; break;
                case 3: p->coderate = CR_LORA_4_7; break;
                case 4: p->coderate = CR_LORA_4_8; break;
                default: p->coderate = CR_UNDEFINED;
            }

            /* determine if 'PPM mode' is on, needed for timestamp correction */
            if (SET_PPM_ON(p->bandwidth,p->datarate)) {
                ppm = 1;
            } else {
                ppm = 0;
            }

            /* timestamp correction code, base delay */
            if (ifmod == IF_LORA_STD) { /* if packet was received on the stand-alone LoRa modem */
                switch (lora_rx_bw) {
                    case BW_125KHZ:
                        delay_x = 64;
                        bw_pow = 1;
                        break;
                    case BW_250KHZ:
                        delay_x = 32;
                        bw_pow = 2;
                        break;
                    case BW_500KHZ:
                        delay_x = 16;
                        bw_pow = 4;
                        break;
                    default:
                        DEBUG_PRINTF("ERROR: UNEXPECTED VALUE %d IN SWITCH STATEMENT\n", p->bandwidth);
                        delay_x = 0;
                        bw_pow = 0;
                }
            } else { /* packet was received on one of the sensor channels = 125kHz */
                delay_x = 114;
                bw_pow = 1;
            }

            /* timestamp correction code, variable delay */
            if ((sf >= 6) && (sf <= 12) && (bw_pow > 0)) {
                if ((2*(sz + 2*crc_en) - (sf-7)) <= 0) { /* payload fits entirely in first 8 symbols */
                    delay_y = ( ((1<<(sf-1)) * (sf+1)) + (3 * (1<<(sf-4))) ) / bw_pow;
                    delay_z = 32 * (2*(sz+2*crc_en) + 5) / bw_pow;
                } else {
                    delay_y = ( ((1<<(sf-1)) * (sf+1)) + ((4 - ppm) * (1<<(sf-4))) ) / bw_pow;
                    delay_z = (16 + 4*cr) * (((2*(sz+2*crc_en)-sf+6) % (sf - 2*ppm)) + 1) / bw_pow;
                }
                timestamp_correction = delay_x + delay_y + delay_z;
            } else {
                timestamp_correction = 0;
                DEBUG_MSG("WARNING: invalid packet, no timestamp correction\n");
            }

            /* RSSI correction */
            if (ifmod == IF_LORA_MULTI) {
                p->rssi -= RSSI_MULTI_BIAS;
            }

        } else if (ifmod == IF_FSK_STD) {
            DEBUG_MSG("Note: FSK packet\n");
            switch(stat_fifo & 0x07) {
                case 5:
                    p->status = STAT_CRC_OK;
                    break;
                case 7:
                    p->status = STAT_CRC_BAD;
                    break;
                case 1:
                    p->status = STAT_NO_CRC;
                    break;
                default:
                    p->status = STAT_UNDEFINED;
                    break;
            }
            p->modulation = MOD_FSK;
            p->snr = -128.0;
            p->snr_min = -128.0;
            p->snr_max = -128.0;
            p->bandwidth = fsk_rx_bw;
            p->datarate = fsk_rx_dr;
            p->coderate = CR_UNDEFINED;
            timestamp_correction = ((uint32_t)680000 / fsk_rx_dr) - 20;

            /* RSSI correction */
            p->rssi = RSSI_FSK_POLY_0 + RSSI_FSK_POLY_1 * p->rssi + RSSI_FSK_POLY_2 * pow(p->rssi, 2);
        } else {
            DEBUG_MSG("ERROR: UNEXPECTED PACKET ORIGIN\n");
            p->status = STAT_UNDEFINED;
            p->modulation = MOD_UNDEFINED;
            p->rssi = -128.0;
            p->snr = -128.0;
            p->snr_min = -128.0;
            p->snr_max = -128.0;
            p->bandwidth = BW_UNDEFINED;
            p->datarate = DR_UNDEFINED;
            p->coderate = CR_UNDEFINED;
            timestamp_correction = 0;
        }

        raw_timestamp = (uint32_t)buff[sz+6] + ((uint32_t)buff[sz+7] << 8) + ((uint32_t)buff[sz+8] << 16) + ((uint32_t)buff[sz+9] << 24);
        p->count_us = raw_timestamp - timestamp_correction;
        p->crc = (uint16_t)buff[sz+10] + ((uint16_t)buff[sz+11] << 8);

        /* advance packet FIFO */
        lgw_reg_w(LGW_RX_PACKET_DATA_FIFO_NUM_STORED, 0);
    }

    return nb_pkt_fetch;
}

/* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ */

int lgw_send(struct lgw_pkt_tx_s pkt_data) {
    int i, x;
    uint8_t buff[256+TX_METADATA_NB]; /* buffer to prepare the packet to send + metadata before SPI write burst */
    uint32_t part_int = 0; /* integer part for PLL register value calculation */
    uint32_t part_frac = 0; /* fractional part for PLL register value calculation */
    uint16_t fsk_dr_div; /* divider to configure for target datarate */
    int transfer_size = 0; /* data to transfer from host to TX databuffer */
    int payload_offset = 0; /* start of the payload content in the databuffer */
    uint8_t pow_index = 0; /* 4-bit value to set the firmware TX power */
    uint8_t target_mix_gain = 0; /* used to select the proper I/Q offset correction */
    uint32_t count_trig = 0; /* timestamp value in trigger mode corrected for TX start delay */
    bool tx_allowed = false;
    uint16_t tx_start_delay;
    bool tx_notch_enable = false;

    /* check if the concentrator is running */
    if (lgw_is_started == false) {
        DEBUG_MSG("ERROR: CONCENTRATOR IS NOT RUNNING, START IT BEFORE SENDING\n");
        return LGW_HAL_ERROR;
    }

    /* check input range (segfault prevention) */
    if (pkt_data.rf_chain >= LGW_RF_CHAIN_NB) {
        DEBUG_MSG("ERROR: INVALID RF_CHAIN TO SEND PACKETS\n");
        return LGW_HAL_ERROR;
    }

    /* check input variables */
    if (rf_tx_enable[pkt_data.rf_chain] == false) {
        DEBUG_MSG("ERROR: SELECTED RF_CHAIN IS DISABLED FOR TX ON SELECTED BOARD\n");
        return LGW_HAL_ERROR;
    }
    if (rf_enable[pkt_data.rf_chain] == false) {
        DEBUG_MSG("ERROR: SELECTED RF_CHAIN IS DISABLED\n");
        return LGW_HAL_ERROR;
    }
    if (!IS_TX_MODE(pkt_data.tx_mode)) {
        DEBUG_MSG("ERROR: TX_MODE NOT SUPPORTED\n");
        return LGW_HAL_ERROR;
    }
    if (pkt_data.modulation == MOD_LORA) {
        if (!IS_LORA_BW(pkt_data.bandwidth)) {
            DEBUG_MSG("ERROR: BANDWIDTH NOT SUPPORTED BY LORA TX\n");
            return LGW_HAL_ERROR;
        }
        if (!IS_LORA_STD_DR(pkt_data.datarate)) {
            DEBUG_MSG("ERROR: DATARATE NOT SUPPORTED BY LORA TX\n");
            return LGW_HAL_ERROR;
        }
        if (!IS_LORA_CR(pkt_data.coderate)) {
            DEBUG_MSG("ERROR: CODERATE NOT SUPPORTED BY LORA TX\n");
            return LGW_HAL_ERROR;
        }
        if (pkt_data.size > 255) {
            DEBUG_MSG("ERROR: PAYLOAD LENGTH TOO BIG FOR LORA TX\n");
            return LGW_HAL_ERROR;
        }
    } else if (pkt_data.modulation == MOD_FSK) {
        if((pkt_data.f_dev < 1) || (pkt_data.f_dev > 200)) {
            DEBUG_MSG("ERROR: TX FREQUENCY DEVIATION OUT OF ACCEPTABLE RANGE\n");
            return LGW_HAL_ERROR;
        }
        if(!IS_FSK_DR(pkt_data.datarate)) {
            DEBUG_MSG("ERROR: DATARATE NOT SUPPORTED BY FSK IF CHAIN\n");
            return LGW_HAL_ERROR;
        }
        if (pkt_data.size > 255) {
            DEBUG_MSG("ERROR: PAYLOAD LENGTH TOO BIG FOR FSK TX\n");
            return LGW_HAL_ERROR;
        }
    } else {
        DEBUG_MSG("ERROR: INVALID TX MODULATION\n");
        return LGW_HAL_ERROR;
    }

    /* Enable notch filter for LoRa 125kHz */
    if ((pkt_data.modulation == MOD_LORA) && (pkt_data.bandwidth == BW_125KHZ)) {
        tx_notch_enable = true;
    }

    /* Get the TX start delay to be applied for this TX */
    tx_start_delay = lgw_get_tx_start_delay(tx_notch_enable, pkt_data.bandwidth);

    /* interpretation of TX power */

    if (fpga_supports_attenuator()) {
        /* Power is set to max and the attenuator brings down the level to match the packet's request */
        target_mix_gain = 15;  /* Mixer gain is not used for setting power*/
        lgw_reg_w(LGW_TX_GAIN, 0);  /* Dig gain is not used for setting power */
        uint8_t attn = (uint8_t)(max_tx_power - pkt_data.rf_power);
        x = lgw_set_attenuation(&attn);
        if (x != LGW_HAL_SUCCESS) {
            DEBUG_MSG("ERROR: Failed to set attenuation value\n");
            return LGW_HAL_ERROR;
        }
    } else {
        /* Power is matched from the txgain_lut */
        for (pow_index = txgain_lut.size-1; pow_index > 0; pow_index--) {
            if (txgain_lut.lut[pow_index].rf_power <= pkt_data.rf_power) {
                break;
            }
        }

        /* loading TX imbalance correction */
        target_mix_gain = txgain_lut.lut[pow_index].mix_gain;
        /* Set digital gain from LUT */
        lgw_reg_w(LGW_TX_GAIN, txgain_lut.lut[pow_index].dig_gain);
    }

    if (pkt_data.rf_chain == 0) { /* use radio A calibration table */
        lgw_reg_w(LGW_TX_OFFSET_I, cal_offset_a_i[target_mix_gain - 8]);
        lgw_reg_w(LGW_TX_OFFSET_Q, cal_offset_a_q[target_mix_gain - 8]);
    } else { /* use radio B calibration table */
        lgw_reg_w(LGW_TX_OFFSET_I, cal_offset_b_i[target_mix_gain - 8]);
        lgw_reg_w(LGW_TX_OFFSET_Q, cal_offset_b_q[target_mix_gain - 8]);
    }

    /* fixed metadata, useful payload and misc metadata compositing */
    transfer_size = TX_METADATA_NB + pkt_data.size; /*  */
    payload_offset = TX_METADATA_NB; /* start the payload just after the metadata */

    /* metadata 0 to 2, TX PLL frequency */
    switch (rf_radio_type[0]) { /* we assume that there is only one radio type on the board */
        case LGW_RADIO_TYPE_SX1255:
            part_int = pkt_data.freq_hz / (SX125x_32MHz_FRAC << 7); /* integer part, gives the MSB */
            part_frac = ((pkt_data.freq_hz % (SX125x_32MHz_FRAC << 7)) << 9) / SX125x_32MHz_FRAC; /* fractional part, gives middle part and LSB */
            break;
        case LGW_RADIO_TYPE_SX1257:
            part_int = pkt_data.freq_hz / (SX125x_32MHz_FRAC << 8); /* integer part, gives the MSB */
            part_frac = ((pkt_data.freq_hz % (SX125x_32MHz_FRAC << 8)) << 8) / SX125x_32MHz_FRAC; /* fractional part, gives middle part and LSB */
            break;
        default:
            DEBUG_PRINTF("ERROR: UNEXPECTED VALUE %d FOR RADIO TYPE\n", rf_radio_type[0]);
            break;
    }

    buff[0] = 0xFF & part_int; /* Most Significant Byte */
    buff[1] = 0xFF & (part_frac >> 8); /* middle byte */
    buff[2] = 0xFF & part_frac; /* Least Significant Byte */

    /* metadata 3 to 6, timestamp trigger value */
    /* TX state machine must be triggered at (T0 - lgw_i_tx_start_delay_us) for packet to start being emitted at T0 */
    if (pkt_data.tx_mode == TIMESTAMPED)
    {
        count_trig = pkt_data.count_us - (uint32_t)tx_start_delay;
        buff[3] = 0xFF & (count_trig >> 24);
        buff[4] = 0xFF & (count_trig >> 16);
        buff[5] = 0xFF & (count_trig >> 8);
        buff[6] = 0xFF &  count_trig;
    }

    /* parameters depending on modulation  */
    if (pkt_data.modulation == MOD_LORA) {
        /* metadata 7, modulation type, radio chain selection and TX power */
        buff[7] = (0x20 & (pkt_data.rf_chain << 5)) | (0x0F & pow_index); /* bit 4 is 0 -> LoRa modulation */

        buff[8] = 0; /* metadata 8, not used */

        /* metadata 9, CRC, LoRa CR & SF */
        switch (pkt_data.datarate) {
            case DR_LORA_SF7: buff[9] = 7; break;
            case DR_LORA_SF8: buff[9] = 8; break;
            case DR_LORA_SF9: buff[9] = 9; break;
            case DR_LORA_SF10: buff[9] = 10; break;
            case DR_LORA_SF11: buff[9] = 11; break;
            case DR_LORA_SF12: buff[9] = 12; break;
            default: DEBUG_PRINTF("ERROR: UNEXPECTED VALUE %d IN SWITCH STATEMENT\n", pkt_data.datarate);
        }
        switch (pkt_data.coderate) {
            case CR_LORA_4_5: buff[9] |= 1 << 4; break;
            case CR_LORA_4_6: buff[9] |= 2 << 4; break;
            case CR_LORA_4_7: buff[9] |= 3 << 4; break;
            case CR_LORA_4_8: buff[9] |= 4 << 4; break;
            default: DEBUG_PRINTF("ERROR: UNEXPECTED VALUE %d IN SWITCH STATEMENT\n", pkt_data.coderate);
        }
        if (pkt_data.no_crc == false) {
            buff[9] |= 0x80; /* set 'CRC enable' bit */
        } else {
            DEBUG_MSG("Info: packet will be sent without CRC\n");
        }

        /* metadata 10, payload size */
        buff[10] = pkt_data.size;

        /* metadata 11, implicit header, modulation bandwidth, PPM offset & polarity */
        switch (pkt_data.bandwidth) {
            case BW_125KHZ: buff[11] = 0; break;
            case BW_250KHZ: buff[11] = 1; break;
            case BW_500KHZ: buff[11] = 2; break;
            default: DEBUG_PRINTF("ERROR: UNEXPECTED VALUE %d IN SWITCH STATEMENT\n", pkt_data.bandwidth);
        }
        if (pkt_data.no_header == true) {
            buff[11] |= 0x04; /* set 'implicit header' bit */
        }
        if (SET_PPM_ON(pkt_data.bandwidth,pkt_data.datarate)) {
            buff[11] |= 0x08; /* set 'PPM offset' bit at 1 */
        }
        if (pkt_data.invert_pol == true) {
            buff[11] |= 0x10; /* set 'TX polarity' bit at 1 */
        }

        /* metadata 12 & 13, LoRa preamble size */
        if (pkt_data.preamble == 0) { /* if not explicit, use recommended LoRa preamble size */
            pkt_data.preamble = STD_LORA_PREAMBLE;
        } else if (pkt_data.preamble < MIN_LORA_PREAMBLE) { /* enforce minimum preamble size */
            pkt_data.preamble = MIN_LORA_PREAMBLE;
            DEBUG_MSG("Note: preamble length adjusted to respect minimum LoRa preamble size\n");
        }
        buff[12] = 0xFF & (pkt_data.preamble >> 8);
        buff[13] = 0xFF & pkt_data.preamble;

        /* metadata 14 & 15, not used */
        buff[14] = 0;
        buff[15] = 0;

        /* MSB of RF frequency is now used in AGC firmware to implement large/narrow filtering in SX1257/55 */
        buff[0] &= 0x3F; /* Unset 2 MSBs of frequency code */
        if (pkt_data.bandwidth == BW_500KHZ) {
            buff[0] |= 0x80; /* Set MSB bit to enlarge analog filter for 500kHz BW */
        }

        /* Set MSB-1 bit to enable digital filter if required */
        if (tx_notch_enable == true) {
            DEBUG_MSG("INFO: Enabling TX notch filter\n");
            buff[0] |= 0x40;
        }
    } else if (pkt_data.modulation == MOD_FSK) {
        /* metadata 7, modulation type, radio chain selection and TX power */
        buff[7] = (0x20 & (pkt_data.rf_chain << 5)) | 0x10 | (0x0F & pow_index); /* bit 4 is 1 -> FSK modulation */

        buff[8] = 0; /* metadata 8, not used */

        /* metadata 9, frequency deviation */
        buff[9] = pkt_data.f_dev;

        /* metadata 10, payload size */
        buff[10] = pkt_data.size;
        /* TODO: how to handle 255 bytes packets ?!? */

        /* metadata 11, packet mode, CRC, encoding */
        buff[11] = 0x01 | (pkt_data.no_crc?0:0x02) | (0x02 << 2); /* always in variable length packet mode, whitening, and CCITT CRC if CRC is not disabled  */

        /* metadata 12 & 13, FSK preamble size */
        if (pkt_data.preamble == 0) { /* if not explicit, use LoRa MAC preamble size */
            pkt_data.preamble = STD_FSK_PREAMBLE;
        } else if (pkt_data.preamble < MIN_FSK_PREAMBLE) { /* enforce minimum preamble size */
            pkt_data.preamble = MIN_FSK_PREAMBLE;
            DEBUG_MSG("Note: preamble length adjusted to respect minimum FSK preamble size\n");
        }
        buff[12] = 0xFF & (pkt_data.preamble >> 8);
        buff[13] = 0xFF & pkt_data.preamble;

        /* metadata 14 & 15, FSK baudrate */
        fsk_dr_div = (uint16_t)((uint32_t)LGW_XTAL_FREQU / pkt_data.datarate); /* Ok for datarate between 500bps and 250kbps */
        buff[14] = 0xFF & (fsk_dr_div >> 8);
        buff[15] = 0xFF & fsk_dr_div;

        /* insert payload size in the packet for variable mode */
        buff[16] = pkt_data.size;
        ++transfer_size; /* one more byte to transfer to the TX modem */
        ++payload_offset; /* start the payload with one more byte of offset */

        /* MSB of RF frequency is now used in AGC firmware to implement large/narrow filtering in SX1257/55 */
        buff[0] &= 0x7F; /* Always use narrow band for FSK (force MSB to 0) */

    } else {
        DEBUG_MSG("ERROR: INVALID TX MODULATION..\n");
        return LGW_HAL_ERROR;
    }

    /* Configure TX start delay based on TX notch filter */
    lgw_reg_w(LGW_TX_START_DELAY, tx_start_delay);

    /* copy payload from user struct to buffer containing metadata */
    memcpy((void *)(buff + payload_offset), (void *)(pkt_data.payload), pkt_data.size);

    /* reset TX command flags */
    lgw_abort_tx();

    /* put metadata + payload in the TX data buffer */
    lgw_reg_w(LGW_TX_DATA_BUF_ADDR, 0);
    lgw_reg_wb(LGW_TX_DATA_BUF_DATA, buff, transfer_size);
    DEBUG_ARRAY(i, transfer_size, buff);

    x = lbt_is_channel_free(&pkt_data, tx_start_delay, &tx_allowed);
    if (x != LGW_LBT_SUCCESS) {
        DEBUG_MSG("ERROR: Failed to check channel availability for TX\n");
        return LGW_HAL_ERROR;
    }
    if (tx_allowed == true) {
        switch(pkt_data.tx_mode) {
            case IMMEDIATE:
                lgw_reg_w(LGW_TX_TRIG_IMMEDIATE, 1);
                break;

            case TIMESTAMPED:
                lgw_reg_w(LGW_TX_TRIG_DELAYED, 1);
                break;

            case ON_GPS:
                lgw_reg_w(LGW_TX_TRIG_GPS, 1);
                break;

            default:
                DEBUG_PRINTF("ERROR: UNEXPECTED VALUE %d IN SWITCH STATEMENT\n", pkt_data.tx_mode);
                return LGW_HAL_ERROR;
        }
    } else {
        DEBUG_MSG("ERROR: Cannot send packet, channel is busy (LBT)\n");
        return LGW_LBT_ISSUE;
    }

    return LGW_HAL_SUCCESS;
}

/* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ */

int lgw_status(uint8_t select, uint8_t *code) {
    int32_t read_value;

    /* check input variables */
    CHECK_NULL(code);

    if (select == TX_STATUS) {
        lgw_reg_r(LGW_TX_STATUS, &read_value);
        if (lgw_is_started == false) {
            *code = TX_OFF;
        } else if ((read_value & 0x10) == 0) { /* bit 4 @1: TX programmed */
            *code = TX_FREE;
        } else if ((read_value & 0x60) != 0) { /* bit 5 or 6 @1: TX sequence */
            *code = TX_EMITTING;
        } else {
            *code = TX_SCHEDULED;
        }
        return LGW_HAL_SUCCESS;

    } else if (select == RX_STATUS) {
        *code = RX_STATUS_UNKNOWN; /* todo */
        return LGW_HAL_SUCCESS;

    } else {
        DEBUG_MSG("ERROR: SELECTION INVALID, NO STATUS TO RETURN\n");
        return LGW_HAL_ERROR;
    }

}

/* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ */

int lgw_abort_tx(void) {
    int i;

    i = lgw_reg_w(LGW_TX_TRIG_ALL, 0);

    if (i == LGW_REG_SUCCESS) return LGW_HAL_SUCCESS;
    else return LGW_HAL_ERROR;
}

/* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ */

int lgw_get_trigcnt(uint32_t* trig_cnt_us) {
    int i;
    int32_t val;

    i = lgw_reg_r(LGW_TIMESTAMP, &val);
    if (i == LGW_REG_SUCCESS) {
        *trig_cnt_us = (uint32_t)val;
        return LGW_HAL_SUCCESS;
    } else {
        return LGW_HAL_ERROR;
    }
}

/* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ */

const char* lgw_version_info() {
    return lgw_version_string;
}

/* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ */

uint32_t lgw_time_on_air(struct lgw_pkt_tx_s *packet) {
    int32_t val;
    uint8_t SF, H, DE;
    uint16_t BW;
    uint32_t payloadSymbNb, Tpacket;
    double Tsym, Tpreamble, Tpayload, Tfsk;

    if (packet == NULL) {
        DEBUG_MSG("ERROR: Failed to compute time on air, wrong parameter\n");
        return 0;
    }

    if (packet->modulation == MOD_LORA) {
        /* Get bandwidth */
        val = lgw_bw_getval(packet->bandwidth);
        if (val != -1) {
            BW = (uint16_t)(val / 1E3);
        } else {
            DEBUG_PRINTF("ERROR: Cannot compute time on air for this packet, unsupported bandwidth (0x%02X)\n", packet->bandwidth);
            return 0;
        }

        /* Get datarate */
        val = lgw_sf_getval(packet->datarate);
        if (val != -1) {
            SF = (uint8_t)val;
        } else {
            DEBUG_PRINTF("ERROR: Cannot compute time on air for this packet, unsupported datarate (0x%02X)\n", packet->datarate);
            return 0;
        }

        /* Duration of 1 symbol */
        Tsym = pow(2, SF) / BW;

        /* Duration of preamble */
        Tpreamble = ((double)(packet->preamble) + 4.25) * Tsym;

        /* Duration of payload */
        H = (packet->no_header==false) ? 0 : 1; /* header is always enabled, except for beacons */
        DE = (SF >= 11) ? 1 : 0; /* Low datarate optimization enabled for SF11 and SF12 */

        payloadSymbNb = 8 + (ceil((double)(8*packet->size - 4*SF + 28 + 16 - 20*H) / (double)(4*(SF - 2*DE))) * (packet->coderate + 4)); /* Explicitely cast to double to keep precision of the division */

        Tpayload = payloadSymbNb * Tsym;

        /* Duration of packet */
        Tpacket = Tpreamble + Tpayload;
    } else if (packet->modulation == MOD_FSK) {
        /* PREAMBLE + SYNC_WORD + PKT_LEN + PKT_PAYLOAD + CRC
                PREAMBLE: default 5 bytes
                SYNC_WORD: default 3 bytes
                PKT_LEN: 1 byte (variable length mode)
                PKT_PAYLOAD: x bytes
                CRC: 0 or 2 bytes
        */
        Tfsk = (8 * (double)(packet->preamble + fsk_sync_word_size + 1 + packet->size + ((packet->no_crc == true) ? 0 : 2)) / (double)packet->datarate) * 1E3;

        /* Duration of packet */
        Tpacket = (uint32_t)Tfsk + 1; /* add margin for rounding */
    } else {
        Tpacket = 0;
        DEBUG_PRINTF("ERROR: Cannot compute time on air for this packet, unsupported modulation (0x%02X)\n", packet->modulation);
    }

    return Tpacket;
}

/* --- EOF ------------------------------------------------------------------ */