/* $Id$ */ /* * ChangeLog: * 19-Sep-2002 Lineo Japan, Inc. add erase-by-force mode * */ /* * ChangeLog: * 19-Sep-2002 Lineo Japan, Inc. add erase-by-force mode * 23-Oct-2002 SHARP add definitions for CONFIG_MTD_NAND_LOGICAL_ADDRESS_ACCESS * */ #ifndef __MTD_MTD_H__ #define __MTD_MTD_H__ #ifdef __KERNEL__ #include #include #include #include #include #include #endif /* __KERNEL__ */ struct erase_info_user { u_int32_t start; u_int32_t length; }; struct mtd_oob_buf { u_int32_t start; u_int32_t length; unsigned char *ptr; }; #define MTD_CHAR_MAJOR 90 #define MTD_BLOCK_MAJOR 31 #define MAX_MTD_DEVICES 16 #define MTD_ABSENT 0 #define MTD_RAM 1 #define MTD_ROM 2 #define MTD_NORFLASH 3 #define MTD_NANDFLASH 4 #define MTD_PEROM 5 #define MTD_OTHER 14 #define MTD_UNKNOWN 15 #define MTD_CLEAR_BITS 1 // Bits can be cleared (flash) #define MTD_SET_BITS 2 // Bits can be set #define MTD_ERASEABLE 4 // Has an erase function #define MTD_WRITEB_WRITEABLE 8 // Direct IO is possible #define MTD_VOLATILE 16 // Set for RAMs #define MTD_XIP 32 // eXecute-In-Place possible #define MTD_OOB 64 // Out-of-band data (NAND flash) #define MTD_ECC 128 // Device capable of automatic ECC // Some common devices / combinations of capabilities #define MTD_CAP_ROM 0 #define MTD_CAP_RAM (MTD_CLEAR_BITS|MTD_SET_BITS|MTD_WRITEB_WRITEABLE) #define MTD_CAP_NORFLASH (MTD_CLEAR_BITS|MTD_ERASEABLE) #define MTD_CAP_NANDFLASH (MTD_CLEAR_BITS|MTD_ERASEABLE|MTD_OOB) #define MTD_WRITEABLE (MTD_CLEAR_BITS|MTD_SET_BITS) // Types of automatic ECC/Checksum available #define MTD_ECC_NONE 0 // No automatic ECC available #define MTD_ECC_RS_DiskOnChip 1 // Automatic ECC on DiskOnChip #define MTD_ECC_SW 2 // SW ECC for Toshiba & Samsung devices struct mtd_info_user { u_char type; u_int32_t flags; u_int32_t size; // Total size of the MTD u_int32_t erasesize; u_int32_t oobblock; // Size of OOB blocks (e.g. 512) u_int32_t oobsize; // Amount of OOB data per block (e.g. 16) u_int32_t ecctype; u_int32_t eccsize; }; struct region_info_user { u_int32_t offset; /* At which this region starts, * from the beginning of the MTD */ u_int32_t erasesize; /* For this region */ u_int32_t numblocks; /* Number of blocks in this region */ u_int32_t regionindex; }; #ifdef CONFIG_MTD_NAND_LOGICAL_ADDRESS_ACCESS struct read_laddr_info_user { loff_t from; size_t len; u_char* buf; }; struct write_laddr_info_user { loff_t to; size_t len; u_char* buf; }; #endif #define MEMGETINFO _IOR('M', 1, struct mtd_info_user) #define MEMERASE _IOW('M', 2, struct erase_info_user) #define MEMWRITEOOB _IOWR('M', 3, struct mtd_oob_buf) #define MEMREADOOB _IOWR('M', 4, struct mtd_oob_buf) #define MEMLOCK _IOW('M', 5, struct erase_info_user) #define MEMUNLOCK _IOW('M', 6, struct erase_info_user) #define MEMGETREGIONCOUNT _IOR('M', 7, int) #define MEMGETREGIONINFO _IOWR('M', 8, struct region_info_user) #ifdef CONFIG_MTD_NAND_ERASE_BY_FORCE #define MEMERASEBYFORCE _IOW('M', 9, struct erase_info_user) #else #define MEMIOCTLRSV9 _IO('M', 9) #endif #ifdef CONFIG_MTD_NAND_LOGICAL_ADDRESS_ACCESS #define MEMCLEANUPLADDR _IO('M', 10) #define MEMREADLADDR _IOR('M', 11, struct read_laddr_info_user) #define MEMWRITELADDR _IOW('M', 12, struct write_laddr_info_user) #else #define MEMIOCTLRSV10 _IO('M', 10) #define MEMIOCTLRSV11 _IO('M', 11) #define MEMIOCTLRSV12 _IO('M', 12) #endif #ifndef __KERNEL__ typedef struct mtd_info_user mtd_info_t; typedef struct erase_info_user erase_info_t; typedef struct region_info_user region_info_t; /* User-space ioctl definitions */ #else /* __KERNEL__ */ #define MTD_ERASE_PENDING 0x01 #define MTD_ERASING 0x02 #define MTD_ERASE_SUSPEND 0x04 #define MTD_ERASE_DONE 0x08 #define MTD_ERASE_FAILED 0x10 struct erase_info { struct mtd_info *mtd; u_int32_t addr; u_int32_t len; u_long time; u_long retries; u_int dev; u_int cell; void (*callback) (struct erase_info *self); u_long priv; u_char state; struct erase_info *next; #ifdef CONFIG_MTD_NAND_ERASE_BY_FORCE int by_force; #endif }; struct mtd_erase_region_info { u_int32_t offset; /* At which this region starts, from the beginning of the MTD */ u_int32_t erasesize; /* For this region */ u_int32_t numblocks; /* Number of blocks of erasesize in this region */ }; struct mtd_info { u_char type; u_int32_t flags; u_int32_t size; // Total size of the MTD /* "Major" erase size for the device. Naïve users may take this * to be the only erase size available, or may use the more detailed * information below if they desire */ u_int32_t erasesize; u_int32_t oobblock; // Size of OOB blocks (e.g. 512) u_int32_t oobsize; // Amount of OOB data per block (e.g. 16) u_int32_t ecctype; u_int32_t eccsize; // Kernel-only stuff starts here. char *name; int index; /* Data for variable erase regions. If numeraseregions is zero, * it means that the whole device has erasesize as given above. */ int numeraseregions; struct mtd_erase_region_info *eraseregions; /* This really shouldn't be here. It can go away in 2.5 */ u_int32_t bank_size; struct module *module; int (*erase) (struct mtd_info *mtd, struct erase_info *instr); /* This stuff for eXecute-In-Place */ int (*point) (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char **mtdbuf); /* We probably shouldn't allow XIP if the unpoint isn't a NULL */ void (*unpoint) (struct mtd_info *mtd, u_char * addr); int (*read) (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf); int (*write) (struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, const u_char *buf); int (*read_ecc) (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf, u_char *eccbuf, int oobsel); int (*write_ecc) (struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, const u_char *buf, u_char *eccbuf, int oobsel); int (*read_oob) (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf); int (*write_oob) (struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, const u_char *buf); /* * Methods to access the protection register area, present in some * flash devices. The user data is one time programmable but the * factory data is read only. */ int (*read_user_prot_reg) (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf); int (*read_fact_prot_reg) (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf); /* This function is not yet implemented */ int (*write_user_prot_reg) (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf); /* iovec-based read/write methods. We need these especially for NAND flash, with its limited number of write cycles per erase. NB: The 'count' parameter is the number of _vectors_, each of which contains an (ofs, len) tuple. */ int (*readv) (struct mtd_info *mtd, struct iovec *vecs, unsigned long count, loff_t from, size_t *retlen); int (*readv_ecc) (struct mtd_info *mtd, struct iovec *vecs, unsigned long count, loff_t from, size_t *retlen, u_char *eccbuf, int oobsel); int (*writev) (struct mtd_info *mtd, const struct iovec *vecs, unsigned long count, loff_t to, size_t *retlen); int (*writev_ecc) (struct mtd_info *mtd, const struct iovec *vecs, unsigned long count, loff_t to, size_t *retlen, u_char *eccbuf, int oobsel); /* Sync */ void (*sync) (struct mtd_info *mtd); /* Chip-supported device locking */ int (*lock) (struct mtd_info *mtd, loff_t ofs, size_t len); int (*unlock) (struct mtd_info *mtd, loff_t ofs, size_t len); /* Power Management functions */ int (*suspend) (struct mtd_info *mtd); void (*resume) (struct mtd_info *mtd); #ifdef CONFIG_MTD_NAND_LOGICAL_ADDRESS_ACCESS /* Logical Address Access functions */ int (*cleanup_laddr)(struct mtd_info *mtd); int (*read_laddr)(struct mtd_info *mtd, loff_t from, size_t len, u_char *buf); int (*write_laddr)(struct mtd_info *mtd, loff_t to, size_t len, u_char *buf, int (*eraseproc)(struct mtd_info *mtd, u_int32_t addr)); #endif void *priv; }; /* Kernel-side ioctl definitions */ extern int add_mtd_device(struct mtd_info *mtd); extern int del_mtd_device (struct mtd_info *mtd); extern struct mtd_info *__get_mtd_device(struct mtd_info *mtd, int num); static inline struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num) { struct mtd_info *ret; ret = __get_mtd_device(mtd, num); if (ret && ret->module && !try_inc_mod_count(ret->module)) return NULL; return ret; } static inline void put_mtd_device(struct mtd_info *mtd) { if (mtd->module) __MOD_DEC_USE_COUNT(mtd->module); } struct mtd_notifier { void (*add)(struct mtd_info *mtd); void (*remove)(struct mtd_info *mtd); struct mtd_notifier *next; }; extern void register_mtd_user (struct mtd_notifier *new); extern int unregister_mtd_user (struct mtd_notifier *old); #ifndef MTDC #define MTD_ERASE(mtd, args...) (*(mtd->erase))(mtd, args) #define MTD_POINT(mtd, a,b,c,d) (*(mtd->point))(mtd, a,b,c, (u_char **)(d)) #define MTD_UNPOINT(mtd, arg) (*(mtd->unpoint))(mtd, (u_char *)arg) #define MTD_READ(mtd, args...) (*(mtd->read))(mtd, args) #define MTD_WRITE(mtd, args...) (*(mtd->write))(mtd, args) #define MTD_READV(mtd, args...) (*(mtd->readv))(mtd, args) #define MTD_WRITEV(mtd, args...) (*(mtd->writev))(mtd, args) #define MTD_READECC(mtd, args...) (*(mtd->read_ecc))(mtd, args) #define MTD_WRITEECC(mtd, args...) (*(mtd->write_ecc))(mtd, args) #define MTD_READOOB(mtd, args...) (*(mtd->read_oob))(mtd, args) #define MTD_WRITEOOB(mtd, args...) (*(mtd->write_oob))(mtd, args) #define MTD_SYNC(mtd) do { if (mtd->sync) (*(mtd->sync))(mtd); } while (0) #endif /* MTDC */ /* * Debugging macro and defines */ #define MTD_DEBUG_LEVEL0 (0) /* Quiet */ #define MTD_DEBUG_LEVEL1 (1) /* Audible */ #define MTD_DEBUG_LEVEL2 (2) /* Loud */ #define MTD_DEBUG_LEVEL3 (3) /* Noisy */ #ifdef CONFIG_MTD_DEBUG #define DEBUG(n, args...) \ if (n <= CONFIG_MTD_DEBUG_VERBOSE) { \ printk(KERN_INFO args); \ } #else /* CONFIG_MTD_DEBUG */ #define DEBUG(n, args...) #endif /* CONFIG_MTD_DEBUG */ #endif /* __KERNEL__ */ #endif /* __MTD_MTD_H__ */