summaryrefslogtreecommitdiff
path: root/recipes/u-boot/u-boot-1.3.1/mpc8313e-rdb-nand.patch
diff options
context:
space:
mode:
Diffstat (limited to 'recipes/u-boot/u-boot-1.3.1/mpc8313e-rdb-nand.patch')
-rw-r--r--recipes/u-boot/u-boot-1.3.1/mpc8313e-rdb-nand.patch895
1 files changed, 895 insertions, 0 deletions
diff --git a/recipes/u-boot/u-boot-1.3.1/mpc8313e-rdb-nand.patch b/recipes/u-boot/u-boot-1.3.1/mpc8313e-rdb-nand.patch
new file mode 100644
index 0000000000..e653b75fb9
--- /dev/null
+++ b/recipes/u-boot/u-boot-1.3.1/mpc8313e-rdb-nand.patch
@@ -0,0 +1,895 @@
+diff -urN u-boot-1.3.1.orig/board/freescale/mpc8313erdb/Makefile u-boot-1.3.1/board/freescale/mpc8313erdb/Makefile
+--- u-boot-1.3.1.orig/board/freescale/mpc8313erdb/Makefile 2007-12-06 10:21:19.000000000 +0100
++++ u-boot-1.3.1/board/freescale/mpc8313erdb/Makefile 2008-01-31 17:35:43.000000000 +0100
+@@ -25,7 +25,7 @@
+
+ LIB = $(obj)lib$(BOARD).a
+
+-COBJS := $(BOARD).o sdram.o
++COBJS := $(BOARD).o sdram.o nand.o
+
+ SRCS := $(SOBJS:.o=.S) $(COBJS:.o=.c)
+ OBJS := $(addprefix $(obj),$(COBJS))
+diff -urN u-boot-1.3.1.orig/board/freescale/mpc8313erdb/nand.c u-boot-1.3.1/board/freescale/mpc8313erdb/nand.c
+--- u-boot-1.3.1.orig/board/freescale/mpc8313erdb/nand.c 1970-01-01 01:00:00.000000000 +0100
++++ u-boot-1.3.1/board/freescale/mpc8313erdb/nand.c 2008-01-31 17:35:26.000000000 +0100
+@@ -0,0 +1,868 @@
++/*
++ * Copyright (C) Freescale Semiconductor, Inc. 2006.
++ *
++ * Initialized by Nick.Spence@freescale.com
++ * Wilson.Lo@freescale.com
++ *
++ * See file CREDITS for list of people who contributed to this
++ * project.
++ *
++ * This program is free software; you can redistribute it and/or
++ * modify it under the terms of the GNU General Public License as
++ * published by the Free Software Foundation; either version 2 of
++ * the License, or (at your option) any later version.
++ *
++ * This program is distributed in the hope that it will be useful,
++ * but WITHOUT ANY WARRANTY; without even the implied warranty of
++ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
++ * GNU General Public License for more details.
++ *
++ * You should have received a copy of the GNU General Public License
++ * along with this program; if not, write to the Free Software
++ * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
++ * MA 02111-1307 USA
++ */
++
++#include <common.h>
++
++#if defined(CONFIG_CMD_NAND)
++#if defined(CFG_NAND_LEGACY)
++ #error "U-Boot legacy NAND commands not supported."
++#else
++
++#include <malloc.h>
++#include <asm/errno.h>
++#include <nand.h>
++
++#undef CFG_FCM_DEBUG
++#define CFG_FCM_DEBUG_LVL 1
++#ifdef CFG_FCM_DEBUG
++#define FCM_DEBUG(n, args...) \
++ do { \
++ if (n <= (CFG_FCM_DEBUG_LVL + 0)) \
++ printf(args); \
++ } while(0)
++#else /* CONFIG_FCM_DEBUG */
++#define FCM_DEBUG(n, args...) do { } while(0)
++#endif
++
++#define MIN(x, y) ((x < y) ? x : y)
++
++#define ERR_BYTE 0xFF /* Value returned for read bytes when read failed */
++
++#define FCM_TIMEOUT_USECS 100000 /* Maximum number of uSecs to wait for FCM */
++
++/* Private structure holding NAND Flash device specific information */
++struct fcm_nand {
++ int bank; /* Chip select bank number */
++ unsigned int base; /* Chip select base address */
++ int pgs; /* NAND page size */
++ int oobbuf; /* Pointer to OOB block */
++ unsigned int page; /* Last page written to / read from */
++ unsigned int fmr; /* FCM Flash Mode Register value */
++ unsigned int mdr; /* UPM/FCM Data Register value */
++ unsigned int use_mdr; /* Non zero if the MDR is to be set */
++ u_char *addr; /* Address of assigned FCM buffer */
++ unsigned int read_bytes; /* Number of bytes read during command */
++ unsigned int index; /* Pointer to next byte to 'read' */
++ unsigned int req_bytes; /* Number of bytes read if command ok */
++ unsigned int req_index; /* New read index if command ok */
++ unsigned int status; /* status read from LTESR after last op*/
++};
++
++
++/* These map to the positions used by the FCM hardware ECC generator */
++
++/* Small Page FLASH with FMR[ECCM] = 0 */
++static struct nand_oobinfo fcm_oob_sp_eccm0 = { /* TODO */
++ .useecc = MTD_NANDECC_AUTOPL_USR, /* MTD_NANDECC_PLACEONLY, */
++ .eccbytes = 3,
++ .eccpos = {6, 7, 8},
++ .oobfree = { {0, 5}, {9, 7} }
++};
++
++/* Small Page FLASH with FMR[ECCM] = 1 */
++static struct nand_oobinfo fcm_oob_sp_eccm1 = { /* TODO */
++ .useecc = MTD_NANDECC_AUTOPL_USR, /* MTD_NANDECC_PLACEONLY, */
++ .eccbytes = 3,
++ .eccpos = {8, 9, 10},
++ .oobfree = { {0, 5}, {6, 2}, {11, 5} }
++};
++
++/* Large Page FLASH with FMR[ECCM] = 0 */
++static struct nand_oobinfo fcm_oob_lp_eccm0 = {
++ .useecc = MTD_NANDECC_AUTOPL_USR, /* MTD_NANDECC_PLACEONLY, */
++ .eccbytes = 12,
++ .eccpos = {6, 7, 8, 22, 23, 24, 38, 39, 40, 54, 55, 56},
++ .oobfree = { {1, 5}, {9, 13}, {25, 13}, {41, 13}, {57, 7} }
++};
++
++/* Large Page FLASH with FMR[ECCM] = 1 */
++static struct nand_oobinfo fcm_oob_lp_eccm1 = {
++ .useecc = MTD_NANDECC_AUTOPL_USR, /* MTD_NANDECC_PLACEONLY, */
++ .eccbytes = 12,
++ .eccpos = {8, 9, 10, 24, 25, 26, 40, 41, 42, 56, 57, 58},
++ .oobfree = { {1, 7}, {11, 13}, {27, 13}, {43, 13}, {59, 5} }
++};
++
++/*
++ * execute FCM command and wait for it to complete
++ */
++static int fcm_run_command(struct mtd_info *mtd)
++{
++ volatile immap_t *im = (immap_t *) CFG_IMMR;
++ volatile lbus83xx_t *lbc= &im->lbus;
++ register struct nand_chip *this = mtd->priv;
++ struct fcm_nand *fcm = this->priv;
++ long long end_tick;
++
++ /* Setup the FMR[OP] to execute without write protection */
++ lbc->fmr = fcm->fmr | 3;
++ if (fcm->use_mdr)
++ lbc->mdr = fcm->mdr;
++
++ FCM_DEBUG(5,"fcm_run_command: fmr= %08X fir= %08X fcr= %08X\n",
++ lbc->fmr, lbc->fir, lbc->fcr);
++ FCM_DEBUG(5,"fcm_run_command: fbar=%08X fpar=%08X fbcr=%08X bank=%d\n",
++ lbc->fbar, lbc->fpar, lbc->fbcr, fcm->bank);
++
++ /* clear event registers */
++ lbc->lteatr = 0;
++ lbc->ltesr |= (LTESR_FCT | LTESR_PAR | LTESR_CC);
++
++ /* execute special operation */
++ lbc->lsor = fcm->bank;
++
++ /* wait for FCM complete flag or timeout */
++ fcm->status = 0;
++ end_tick = usec2ticks(FCM_TIMEOUT_USECS) + get_ticks();
++
++ while (end_tick > get_ticks()) {
++ if (lbc->ltesr & LTESR_CC) {
++ fcm->status = lbc->ltesr &
++ (LTESR_FCT | LTESR_PAR | LTESR_CC);
++ break;
++ }
++ }
++
++ /* store mdr value in case it was needed */
++ if (fcm->use_mdr)
++ fcm->mdr = lbc->mdr;
++
++ fcm->use_mdr = 0;
++
++ FCM_DEBUG(5,"fcm_run_command: stat=%08X mdr= %08X fmr= %08X\n",
++ fcm->status, fcm->mdr, lbc->fmr);
++
++ /* if the operation completed ok then set the read buffer pointers */
++ if (fcm->status == LTESR_CC) {
++ fcm->read_bytes = fcm->req_bytes;
++ fcm->index = fcm->req_index;
++ return 0;
++ }
++
++ return -1;
++}
++
++/*
++ * Set up the FCM hardware block and page address fields, and the fcm
++ * structure addr field to point to the correct FCM buffer in memory
++ */
++static void set_addr(struct mtd_info *mtd, int column, int page_addr, int oob)
++{
++ volatile immap_t *im = (immap_t *) CFG_IMMR;
++ volatile lbus83xx_t *lbc= &im->lbus;
++ register struct nand_chip *this = mtd->priv;
++ struct fcm_nand *fcm = this->priv;
++ int buf_num;
++
++ fcm->page = page_addr;
++
++ lbc->fbar = page_addr >> (this->phys_erase_shift - this->page_shift);
++ if (fcm->pgs) {
++ lbc->fpar = ((page_addr << FPAR_LP_PI_SHIFT) & FPAR_LP_PI) |
++ ( oob ? FPAR_LP_MS : 0) |
++ column;
++ buf_num = (page_addr & 1) << 2;
++ } else {
++ lbc->fpar = ((page_addr << FPAR_SP_PI_SHIFT) & FPAR_SP_PI) |
++ ( oob ? FPAR_SP_MS : 0) |
++ column;
++ buf_num = page_addr & 7;
++ }
++ fcm->addr = (unsigned char*)(fcm->base + (buf_num * 1024));
++
++ /* for OOB data point to the second half of the buffer */
++ if (oob) {
++ fcm->addr += (fcm->pgs ? 2048 : 512);
++ }
++}
++
++/* not required for FCM */
++static void fcm_hwcontrol(struct mtd_info *mtdinfo, int cmd)
++{
++ return;
++}
++
++
++/*
++ * FCM does not support 16 bit data busses
++ */
++static u16 fcm_read_word(struct mtd_info *mtd)
++{
++ printf("fcm_read_word: UNIMPLEMENTED.\n");
++ return 0;
++}
++static void fcm_write_word(struct mtd_info *mtd, u16 word)
++{
++ printf("fcm_write_word: UNIMPLEMENTED.\n");
++}
++
++/*
++ * Write buf to the FCM Controller Data Buffer
++ */
++static void fcm_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
++{
++ register struct nand_chip *this = mtd->priv;
++ struct fcm_nand *fcm = this->priv;
++
++ FCM_DEBUG(3,"fcm_write_buf: writing %d bytes starting with 0x%x"
++ " at %d.\n", len, *((unsigned long*) buf), fcm->index);
++
++ /* If armed catch the address of the OOB buffer so that it can be */
++ /* updated with the real signature after the program comletes */
++ if (!fcm->oobbuf)
++ fcm->oobbuf = (int) buf;
++
++ /* copy the data into the FCM hardware buffer and update the index */
++ memcpy(&(fcm->addr[fcm->index]), buf, len);
++ fcm->index += len;
++ return;
++}
++
++
++/*
++ * FCM does not support individual writes. Instead these are either commands
++ * or data being written, both of which are handled through the cmdfunc
++ * handler.
++ */
++static void fcm_write_byte(struct mtd_info *mtd, u_char byte)
++{
++ printf("fcm_write_byte: UNIMPLEMENTED.\n");
++}
++
++/*
++ * read a byte from either the FCM hardware buffer if it has any data left
++ * otherwise issue a command to read a single byte.
++ */
++static u_char fcm_read_byte(struct mtd_info *mtd)
++{
++ volatile immap_t *im = (immap_t *) CFG_IMMR;
++ volatile lbus83xx_t *lbc= &im->lbus;
++ register struct nand_chip *this = mtd->priv;
++ struct fcm_nand *fcm = this->priv;
++ unsigned char byte;
++
++ /* If there are still bytes in the FCM then use the next byte */
++ if(fcm->index < fcm->read_bytes) {
++ byte = fcm->addr[(fcm->index)++];
++ FCM_DEBUG(4,"fcm_read_byte: byte %u (%02X): %d of %d.\n",
++ byte, byte, fcm->index-1, fcm->read_bytes);
++ } else {
++ /* otherwise issue a command to read 1 byte */
++ lbc->fir = (FIR_OP_RSW << FIR_OP0_SHIFT);
++ fcm->use_mdr = 1;
++ fcm->read_bytes = 0;
++ fcm->index = 0;
++ fcm->req_bytes = 0;
++ fcm->req_index = 0;
++ byte = fcm_run_command(mtd) ? ERR_BYTE : fcm->mdr & 0xff;
++ FCM_DEBUG(4,"fcm_read_byte: byte %u (%02X) from bus.\n",
++ byte, byte);
++ }
++
++ return byte;
++}
++
++
++/*
++ * Read from the FCM Controller Data Buffer
++ */
++static void fcm_read_buf(struct mtd_info *mtd, u_char* buf, int len)
++{
++ volatile immap_t *im = (immap_t *) CFG_IMMR;
++ volatile lbus83xx_t *lbc= &im->lbus;
++ register struct nand_chip *this = mtd->priv;
++ struct fcm_nand *fcm = this->priv;
++ int i;
++ int rest;
++
++ FCM_DEBUG(3,"fcm_read_buf: reading %d bytes.\n", len);
++
++ /* If last read failed then return error bytes */
++ if (fcm->status != LTESR_CC) {
++ /* just keep copying bytes so that the oob works */
++ memcpy(buf, &(fcm->addr[(fcm->index)]), len);
++ fcm->index += len;
++ }
++ else
++ {
++ /* see how much is still in the FCM buffer */
++ i = min(len, (fcm->read_bytes - fcm->index));
++ rest = i - len;
++ len = i;
++
++ memcpy(buf, &(fcm->addr[(fcm->index)]), len);
++ fcm->index += len;
++
++ /* If more data is needed then issue another block read */
++ if (rest) {
++ FCM_DEBUG(3,"fcm_read_buf: getting %d more bytes.\n",
++ rest);
++ buf += len;
++ lbc->fir = (FIR_OP_RBW << FIR_OP0_SHIFT);
++ set_addr(mtd, 0, 0, 0);
++ lbc->fbcr = rest;
++ fcm->req_bytes = lbc->fbcr;
++ fcm->req_index = 0;
++ fcm->use_mdr = 0;
++ if (!fcm_run_command(mtd))
++ fcm_read_buf(mtd, buf, rest);
++ else
++ memcpy(buf, fcm->addr, rest);
++ }
++ }
++ return;
++}
++
++
++/*
++ * Verify buffer against the FCM Controller Data Buffer
++ */
++static int fcm_verify_buf(struct mtd_info *mtd, const u_char *buf, int len)
++{
++ volatile immap_t *im = (immap_t *) CFG_IMMR;
++ volatile lbus83xx_t *lbc= &im->lbus;
++ register struct nand_chip *this = mtd->priv;
++ struct fcm_nand *fcm = this->priv;
++ int i;
++ int rest;
++
++ FCM_DEBUG(3,"fcm_verify_buf: checking %d bytes starting with 0x%02x.\n",
++ len, *((unsigned long*) buf));
++ /* If last read failed then return error bytes */
++ if (fcm->status != LTESR_CC) {
++ return EFAULT;
++ }
++
++ /* see how much is still in the FCM buffer */
++ i = min(len, (fcm->read_bytes - fcm->index));
++ rest = i - len;
++ len = i;
++
++ if (memcmp(buf, &(fcm->addr[(fcm->index)]), len)) {
++ return EFAULT;
++ }
++
++ fcm->index += len;
++ if (rest) {
++ FCM_DEBUG(3,"fcm_verify_buf: getting %d more bytes.\n", rest);
++ buf += len;
++ lbc->fir = (FIR_OP_RBW << FIR_OP0_SHIFT);
++ set_addr(mtd, 0, 0, 0);
++ lbc->fbcr = rest;
++ fcm->req_bytes = lbc->fbcr;
++ fcm->req_index = 0;
++ fcm->use_mdr = 0;
++ if (fcm_run_command(mtd))
++ return EFAULT;
++ return fcm_verify_buf(mtd, buf, rest);
++
++ }
++ return 0;
++}
++
++/* this function is called after Program and Erase Operations to
++ * check for success or failure */
++static int fcm_wait(struct mtd_info *mtd, struct nand_chip *this, int state)
++{
++ volatile immap_t *im = (immap_t *) CFG_IMMR;
++ volatile lbus83xx_t *lbc= &im->lbus;
++ struct fcm_nand *fcm = this->priv;
++
++ if (fcm->status != LTESR_CC) {
++ return(0x1); /* Status Read error */
++ }
++
++ /* Use READ_STATUS command, but wait for the device to be ready */
++ fcm->use_mdr = 0;
++ fcm->req_index = 0;
++ fcm->read_bytes = 0;
++ fcm->index = 0;
++ fcm->oobbuf = -1;
++ lbc->fir = (FIR_OP_CW0 << FIR_OP0_SHIFT) |
++ (FIR_OP_RBW << FIR_OP1_SHIFT);
++ lbc->fcr = (NAND_CMD_STATUS << FCR_CMD0_SHIFT);
++ set_addr(mtd, 0, 0, 0);
++ lbc->fbcr = 1;
++ fcm->req_bytes = lbc->fbcr;
++ fcm_run_command(mtd);
++ if (fcm->status != LTESR_CC) {
++ return(0x1); /* Status Read error */
++ }
++ return this->read_byte(mtd);
++}
++
++
++/* cmdfunc send commands to the FCM */
++static void fcm_cmdfunc(struct mtd_info *mtd, unsigned command,
++ int column, int page_addr)
++{
++ volatile immap_t *im = (immap_t *) CFG_IMMR;
++ volatile lbus83xx_t *lbc= &im->lbus;
++ register struct nand_chip *this = mtd->priv;
++ struct fcm_nand *fcm = this->priv;
++
++ fcm->use_mdr = 0;
++ fcm->req_index = 0;
++
++ /* clear the read buffer */
++ fcm->read_bytes = 0;
++ if (command != NAND_CMD_PAGEPROG) {
++ fcm->index = 0;
++ fcm->oobbuf = -1;
++ }
++
++ switch (command) {
++ /* READ0 and READ1 read the entire buffer to use hardware ECC */
++ case NAND_CMD_READ1:
++ FCM_DEBUG(2,"fcm_cmdfunc: NAND_CMD_READ1, page_addr:"
++ " 0x%x, column: 0x%x.\n", page_addr, column);
++ fcm->req_index = column + 256;
++ goto read0;
++ case NAND_CMD_READ0:
++ FCM_DEBUG(2,"fcm_cmdfunc: NAND_CMD_READ0, page_addr:"
++ " 0x%x, column: 0x%x.\n", page_addr, column);
++ fcm->req_index = column;
++read0:
++ if (fcm->pgs) {
++ lbc->fir = (FIR_OP_CW0 << FIR_OP0_SHIFT) |
++ (FIR_OP_CA << FIR_OP1_SHIFT) |
++ (FIR_OP_PA << FIR_OP2_SHIFT) |
++ (FIR_OP_CW1 << FIR_OP3_SHIFT) |
++ (FIR_OP_RBW << FIR_OP4_SHIFT);
++ } else {
++ lbc->fir = (FIR_OP_CW0 << FIR_OP0_SHIFT) |
++ (FIR_OP_CA << FIR_OP1_SHIFT) |
++ (FIR_OP_PA << FIR_OP2_SHIFT) |
++ (FIR_OP_RBW << FIR_OP3_SHIFT);
++ }
++ lbc->fcr = (NAND_CMD_READ0 << FCR_CMD0_SHIFT) |
++ (NAND_CMD_READSTART << FCR_CMD1_SHIFT);
++ lbc->fbcr = 0; /* read entire page to enable ECC */
++ set_addr(mtd, 0, page_addr, 0);
++ fcm->req_bytes = mtd->oobblock + mtd->oobsize;
++ goto write_cmd2;
++ /* READOOB read only the OOB becasue no ECC is performed */
++ case NAND_CMD_READOOB:
++ FCM_DEBUG(2,"fcm_cmdfunc: NAND_CMD_READOOB, page_addr:"
++ " 0x%x, column: 0x%x.\n", page_addr, column);
++ if (fcm->pgs) {
++ lbc->fir = (FIR_OP_CW0 << FIR_OP0_SHIFT) |
++ (FIR_OP_CA << FIR_OP1_SHIFT) |
++ (FIR_OP_PA << FIR_OP2_SHIFT) |
++ (FIR_OP_CW1 << FIR_OP3_SHIFT) |
++ (FIR_OP_RBW << FIR_OP4_SHIFT);
++ lbc->fcr = (NAND_CMD_READ0 << FCR_CMD0_SHIFT) |
++ (NAND_CMD_READSTART << FCR_CMD1_SHIFT);
++ } else {
++ lbc->fir = (FIR_OP_CW0 << FIR_OP0_SHIFT) |
++ (FIR_OP_CA << FIR_OP1_SHIFT) |
++ (FIR_OP_PA << FIR_OP2_SHIFT) |
++ (FIR_OP_RBW << FIR_OP3_SHIFT);
++ lbc->fcr = (NAND_CMD_READOOB << FCR_CMD0_SHIFT);
++ }
++ lbc->fbcr = mtd->oobsize - column;
++ set_addr(mtd, column, page_addr, 1);
++ goto write_cmd1;
++ /* READID must read all 5 possible bytes while CEB is active */
++ case NAND_CMD_READID:
++ FCM_DEBUG(2,"fcm_cmdfunc: NAND_CMD_READID.\n");
++ lbc->fir = (FIR_OP_CW0 << FIR_OP0_SHIFT) |
++ (FIR_OP_UA << FIR_OP1_SHIFT) |
++ (FIR_OP_RBW << FIR_OP2_SHIFT);
++ lbc->fcr = (NAND_CMD_READID << FCR_CMD0_SHIFT);
++ lbc->fbcr = 5; /* 5 bytes for manuf, device and exts */
++ fcm->use_mdr = 1;
++ fcm->mdr = 0;
++ goto write_cmd0;
++ /* ERASE1 stores the block and page address */
++ case NAND_CMD_ERASE1:
++ FCM_DEBUG(2,"fcm_cmdfunc: NAND_CMD_ERASE1, page_addr:"
++ " 0x%x.\n", page_addr);
++ set_addr(mtd, 0, page_addr, 0);
++ goto end;
++ /* ERASE2 uses the block and page address from ERASE1 */
++ case NAND_CMD_ERASE2:
++ FCM_DEBUG(2,"fcm_cmdfunc: NAND_CMD_ERASE2.\n");
++ lbc->fir = (FIR_OP_CW0 << FIR_OP0_SHIFT) |
++ (FIR_OP_PA << FIR_OP1_SHIFT) |
++ (FIR_OP_CM1 << FIR_OP2_SHIFT);
++ lbc->fcr = (NAND_CMD_ERASE1 << FCR_CMD0_SHIFT) |
++ (NAND_CMD_ERASE2 << FCR_CMD1_SHIFT);
++ lbc->fbcr = 0;
++ goto write_cmd1;
++ /* SEQIN sets up the addr buffer and all registers except the length */
++ case NAND_CMD_SEQIN:
++ FCM_DEBUG(2,"fcm_cmdfunc: NAND_CMD_SEQIN/PAGE_PROG, page_addr:"
++ " 0x%x, column: 0x%x.\n", page_addr, column);
++ if (column == 0) {
++ lbc->fbcr = 0; /* write entire page to enable ECC */
++ } else {
++ lbc->fbcr = 1; /* mark as partial page so no HW ECC */
++ }
++ if (fcm->pgs) {
++ /* always use READ0 for large page devices */
++ lbc->fir = (FIR_OP_CW0 << FIR_OP0_SHIFT) |
++ (FIR_OP_CA << FIR_OP1_SHIFT) |
++ (FIR_OP_PA << FIR_OP2_SHIFT) |
++ (FIR_OP_WB << FIR_OP3_SHIFT) |
++ (FIR_OP_CW1 << FIR_OP4_SHIFT);
++ lbc->fcr = (NAND_CMD_SEQIN << FCR_CMD0_SHIFT) |
++ (NAND_CMD_PAGEPROG << FCR_CMD1_SHIFT);
++ set_addr(mtd, column, page_addr, 0);
++ } else {
++ lbc->fir = (FIR_OP_CW0 << FIR_OP0_SHIFT) |
++ (FIR_OP_CM2 << FIR_OP1_SHIFT) |
++ (FIR_OP_CA << FIR_OP2_SHIFT) |
++ (FIR_OP_PA << FIR_OP3_SHIFT) |
++ (FIR_OP_WB << FIR_OP4_SHIFT) |
++ (FIR_OP_CW1 << FIR_OP5_SHIFT);
++ if (column >= mtd->oobblock) {
++ /* OOB area --> READOOB */
++ column -= mtd->oobblock;
++ lbc->fcr = (NAND_CMD_READOOB << FCR_CMD0_SHIFT)
++ | (NAND_CMD_PAGEPROG<< FCR_CMD1_SHIFT)
++ | (NAND_CMD_SEQIN << FCR_CMD2_SHIFT);
++ set_addr(mtd, column, page_addr, 1);
++ } else if (column < 256) {
++ /* First 256 bytes --> READ0 */
++ lbc->fcr = (NAND_CMD_READ0 << FCR_CMD0_SHIFT)
++ | (NAND_CMD_PAGEPROG<< FCR_CMD1_SHIFT)
++ | (NAND_CMD_SEQIN << FCR_CMD2_SHIFT);
++ set_addr(mtd, column, page_addr, 0);
++ } else {
++ /* Second 256 bytes --> READ1 */
++ column -= 256;
++ lbc->fcr = (NAND_CMD_READ1 << FCR_CMD0_SHIFT)
++ | (NAND_CMD_PAGEPROG<< FCR_CMD1_SHIFT)
++ | (NAND_CMD_SEQIN << FCR_CMD2_SHIFT);
++ set_addr(mtd, column, page_addr, 0);
++ }
++ }
++ goto end;
++ /* PAGEPROG reuses all of the setup from SEQIN and adds the length */
++ case NAND_CMD_PAGEPROG:
++ FCM_DEBUG(2,"fcm_cmdfunc: NAND_CMD_PAGEPROG"
++ " writing %d bytes.\n",fcm->index);
++ /* if the write did not start at 0 or is not a full page */
++ /* then set the exact length, otherwise use a full page */
++ /* write so the HW generates the ECC. */
++ if (lbc->fbcr ||
++ (fcm->index != (mtd->oobblock + mtd->oobsize)))
++ lbc->fbcr = fcm->index;
++ fcm->req_bytes = 0;
++ goto write_cmd2;
++ /* CMD_STATUS must read the status byte while CEB is active */
++ /* Note - it does not wait for the ready line */
++ case NAND_CMD_STATUS:
++ FCM_DEBUG(2,"fcm_cmdfunc: NAND_CMD_STATUS.\n");
++ lbc->fir = (FIR_OP_CM0 << FIR_OP0_SHIFT) |
++ (FIR_OP_RBW << FIR_OP1_SHIFT);
++ lbc->fcr = (NAND_CMD_STATUS << FCR_CMD0_SHIFT);
++ lbc->fbcr = 1;
++ goto write_cmd0;
++ /* RESET without waiting for the ready line */
++ case NAND_CMD_RESET:
++ FCM_DEBUG(2,"fcm_cmdfunc: NAND_CMD_RESET.\n");
++ lbc->fir = (FIR_OP_CM0 << FIR_OP0_SHIFT);
++ lbc->fcr = (NAND_CMD_RESET << FCR_CMD0_SHIFT);
++ lbc->fbcr = 0;
++ goto write_cmd0;
++ default:
++ printk("fcm_cmdfunc: error, unsupported command.\n");
++ goto end;
++ }
++
++ /* Short cuts fall through to save code */
++ write_cmd0:
++ set_addr(mtd, 0, 0, 0);
++ write_cmd1:
++ fcm->req_bytes = lbc->fbcr;
++ write_cmd2:
++ fcm_run_command(mtd);
++
++#ifdef CONFIG_MTD_NAND_VERIFY_WRITE
++ /* if we wrote a page then read back the oob to get the ECC */
++ if ((command == NAND_CMD_PAGEPROG) &&
++ (this->eccmode > NAND_ECC_SOFT) &&
++ (lbc->fbcr == 0) &&
++ (fcm->oobbuf != 0) &&
++ (fcm->oobbuf != -1)) {
++ int i;
++ uint *oob_config;
++ unsigned char *oob_buf;
++
++ i = fcm->page;
++ oob_buf = (unsigned char*) fcm->oobbuf;
++ oob_config = this->autooob->eccpos;
++
++ /* wait for the write to complete and check it passed */
++ if (!(this->waitfunc(mtd, this, FL_WRITING) & 0x01)) {
++ /* read back the OOB */
++ fcm_cmdfunc(mtd, NAND_CMD_READOOB, 0, i);
++ /* if it succeeded then copy the ECC bytes */
++ if (fcm->status == LTESR_CC) {
++ for (i = 0; i < this->eccbytes; i++) {
++ oob_buf[oob_config[i]] =
++ fcm->addr[oob_config[i]];
++ }
++ }
++ }
++ }
++#endif
++
++ end:
++ return;
++}
++
++/*
++ * fcm_enable_hwecc - start ECC generation
++ */
++static void fcm_enable_hwecc(struct mtd_info *mtd, int mode)
++{
++ return;
++}
++
++/*
++ * fcm_calculate_ecc - Calculate the ECC bytes
++ * This is done by hardware during the write process, so we use this
++ * to arm the oob buf capture on the next write_buf() call. The ECC bytes
++ * only need to be captured if CONFIG_MTD_NAND_VERIFY_WRITE is defined which
++ * reads back the pages and checks they match the data and oob buffers.
++ */
++static int fcm_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code)
++{
++ register struct nand_chip *this = mtd->priv;
++ struct fcm_nand *fcm = this->priv;
++
++#ifdef CONFIG_MTD_NAND_VERIFY_WRITE
++ /* arm capture of oob buf ptr on next write_buf */
++ fcm->oobbuf = 0;
++#endif
++ return 0;
++}
++
++/*
++ * fcm_correct_data - Detect and correct bit error(s)
++ * The detection and correction is done automatically by the hardware,
++ * if the complete page was read. If the status code is okay then there
++ * was no error, otherwise we return an error code indicating an uncorrectable
++ * error.
++ */
++static int fcm_correct_data(struct mtd_info *mtd, u_char *dat, u_char *read_ecc, u_char *calc_ecc)
++{
++ register struct nand_chip *this = mtd->priv;
++ struct fcm_nand *fcm = this->priv;
++
++ /* No errors */
++ if (fcm->status == LTESR_CC)
++ return 0;
++
++ return -1; /* uncorrectable error */
++}
++
++
++
++/*
++ * Dummy scan_bbt to complete setup of the FMR based on NAND size
++ */
++static int fcm_scan_bbt (struct mtd_info *mtd)
++{
++ volatile immap_t *im = (immap_t *) CFG_IMMR;
++ volatile lbus83xx_t *lbc= &im->lbus;
++ register struct nand_chip *this = mtd->priv;
++ struct fcm_nand *fcm = this->priv;
++ unsigned int i;
++ unsigned int al;
++
++ if (!fcm) {
++ printk (KERN_ERR "fcm_scan_bbt():" \
++ " Failed to allocate chip specific data structure\n");
++ return -1;
++ }
++
++ /* calculate FMR Address Length field */
++ al = 0;
++ for (i = this->pagemask >> 16; i ; i >>= 8) {
++ al++;
++ }
++
++ /* add to ECCM mode set in fcm_init */
++ fcm->fmr |= 12 << FMR_CWTO_SHIFT | /* Timeout > 12 mSecs */
++ al << FMR_AL_SHIFT;
++
++ FCM_DEBUG(1,"fcm_init: nand->options = %08X\n", this->options);
++ FCM_DEBUG(1,"fcm_init: nand->numchips = %10d\n", this->numchips);
++ FCM_DEBUG(1,"fcm_init: nand->chipsize = %10d\n", this->chipsize);
++ FCM_DEBUG(1,"fcm_init: nand->pagemask = %10X\n", this->pagemask);
++ FCM_DEBUG(1,"fcm_init: nand->eccmode = %10d\n", this->eccmode );
++ FCM_DEBUG(1,"fcm_init: nand->eccsize = %10d\n", this->eccsize );
++ FCM_DEBUG(1,"fcm_init: nand->eccbytes = %10d\n", this->eccbytes);
++ FCM_DEBUG(1,"fcm_init: nand->eccsteps = %10d\n", this->eccsteps);
++ FCM_DEBUG(1,"fcm_init: nand->chip_delay = %8d\n", this->chip_delay);
++ FCM_DEBUG(1,"fcm_init: nand->badblockpos = %7d\n", this->badblockpos);
++ FCM_DEBUG(1,"fcm_init: nand->chip_shift = %8d\n", this->chip_shift);
++ FCM_DEBUG(1,"fcm_init: nand->page_shift = %8d\n", this->page_shift);
++ FCM_DEBUG(1,"fcm_init: nand->phys_erase_shift = %2d\n",
++ this->phys_erase_shift);
++ FCM_DEBUG(1,"fcm_init: mtd->flags = %08X\n", mtd->flags);
++ FCM_DEBUG(1,"fcm_init: mtd->size = %10d\n", mtd->size);
++ FCM_DEBUG(1,"fcm_init: mtd->erasesize = %10d\n", mtd->erasesize);
++ FCM_DEBUG(1,"fcm_init: mtd->oobblock = %10d\n", mtd->oobblock);
++ FCM_DEBUG(1,"fcm_init: mtd->oobsize = %10d\n", mtd->oobsize);
++ FCM_DEBUG(1,"fcm_init: mtd->oobavail = %10d\n", mtd->oobavail);
++ FCM_DEBUG(1,"fcm_init: mtd->ecctype = %10d\n", mtd->ecctype);
++ FCM_DEBUG(1,"fcm_init: mtd->eccsize = %10d\n", mtd->eccsize);
++
++ /* adjust Option Register and ECC to match Flash page size */
++ if (mtd->oobblock == 512)
++ lbc->bank[fcm->bank].or &= ~(OR_FCM_PGS);
++ else if (mtd->oobblock == 2048) {
++ lbc->bank[fcm->bank].or |= OR_FCM_PGS;
++ /* adjust ecc setup if needed */
++ if ( (lbc->bank[fcm->bank].br & BR_DECC) == BR_DECC_CHK_GEN) {
++ mtd->eccsize = 2048;
++ mtd->oobavail -= 9;
++ this->eccmode = NAND_ECC_HW12_2048;
++ this->eccsize = 2048;
++ this->eccbytes += 9;
++ this->eccsteps = 1;
++ this->autooob = (fcm->fmr & FMR_ECCM) ?
++ &fcm_oob_lp_eccm1 : &fcm_oob_lp_eccm0;
++ memcpy(&mtd->oobinfo, this->autooob,
++ sizeof(mtd->oobinfo));
++ }
++ }
++ else {
++ printf("fcm_init: page size %d is not supported\n",
++ mtd->oobblock);
++ return -1;
++ }
++ fcm->pgs = (lbc->bank[fcm->bank].or>>OR_FCM_PGS_SHIFT) & 1;
++
++ if (al > 2) {
++ printf("fcm_init: %d address bytes is not supported\n", al+2);
++ return -1;
++ }
++
++ /* restore default scan_bbt function and call it */
++ this->scan_bbt = nand_default_bbt;
++ return nand_default_bbt(mtd);
++}
++
++/*
++ * Board-specific NAND initialization. The following members of the
++ * argument are board-specific (per include/linux/mtd/nand_new.h):
++ * - IO_ADDR_R?: address to read the 8 I/O lines of the flash device
++ * - IO_ADDR_W?: address to write the 8 I/O lines of the flash device
++ * - hwcontrol: hardwarespecific function for accesing control-lines
++ * - dev_ready: hardwarespecific function for accesing device ready/busy line
++ * - enable_hwecc: function to enable (reset) hardware ecc generator. Must
++ * only be provided if a hardware ECC is available
++ * - eccmode: mode of ecc, see defines
++ * - chip_delay: chip dependent delay for transfering data from array to
++ * read regs (tR)
++ * - options: various chip options. They can partly be set to inform
++ * nand_scan about special functionality. See the defines for further
++ * explanation
++ * Members with a "?" were not set in the merged testing-NAND branch,
++ * so they are not set here either.
++ */
++int board_nand_init(struct nand_chip *nand)
++{
++ volatile immap_t *im = (immap_t *) CFG_IMMR;
++ volatile lbus83xx_t *lbc= &im->lbus;
++ struct fcm_nand *fcm;
++ unsigned int bank;
++
++ /* Enable FCM detection of timeouts, ECC errors and completion */
++ lbc->ltedr &= ~(LTESR_FCT | LTESR_PAR | LTESR_CC);
++
++ fcm = kmalloc (sizeof(struct fcm_nand), GFP_KERNEL);
++ if (!fcm) {
++ printk (KERN_ERR "board_nand_init():" \
++ " Cannot allocate read buffer data structure\n");
++ return;
++ }
++
++ /* Find which chip select bank is being used for this device */
++ for (bank=0; bank<8; bank++) {
++ if ( (lbc->bank[bank].br & BR_V) &&
++ ( (lbc->bank[bank].br & BR_MSEL) == BR_MS_FCM ) &&
++ ( (lbc->bank[bank].br & BR_BA) ==
++ (lbc->bank[bank].or & OR_FCM_AM &
++ (unsigned int)(nand->IO_ADDR_R) ) ) ) {
++ fcm->bank = bank;
++// TODO fcm->fmr = FMR_ECCM; /* rest filled in later */
++ fcm->fmr = 0; /* rest filled in later */
++ fcm->read_bytes = 0;
++ fcm->index = 0;
++ fcm->pgs = (lbc->bank[bank].or>>OR_FCM_PGS_SHIFT) & 1;
++ fcm->base = lbc->bank[bank].br & BR_BA;
++ fcm->addr = (unsigned char*) (fcm->base);
++ nand->priv = fcm;
++ fcm->oobbuf = -1;
++ break;
++ }
++ }
++
++ if (!nand->priv) {
++ printk (KERN_ERR "board_nand_init():" \
++ " Could not find matching Chip Select\n");
++ return -1;
++ }
++
++ /* set up nand options */
++ nand->options = 0;
++ /* set up function call table */
++ nand->hwcontrol = fcm_hwcontrol;
++ nand->waitfunc = fcm_wait;
++ nand->read_byte = fcm_read_byte;
++ nand->write_byte = fcm_write_byte;
++ nand->read_word = fcm_read_word;
++ nand->write_word = fcm_write_word;
++ nand->read_buf = fcm_read_buf;
++ nand->verify_buf = fcm_verify_buf;
++ nand->write_buf = fcm_write_buf;
++ nand->cmdfunc = fcm_cmdfunc;
++ nand->scan_bbt = fcm_scan_bbt;
++
++ /* If CS Base Register selects full hardware ECC then use it */
++ if ( ( (lbc->bank[bank].br & BR_DECC) >> BR_DECC_SHIFT) == 2) {
++ /* put in small page settings and adjust later if needed */
++ nand->eccmode = NAND_ECC_HW3_512;
++ nand->autooob = (fcm->fmr & FMR_ECCM) ?
++ &fcm_oob_sp_eccm1 : &fcm_oob_sp_eccm0;
++ nand->calculate_ecc = fcm_calculate_ecc;
++ nand->correct_data = fcm_correct_data;
++ nand->enable_hwecc = fcm_enable_hwecc;
++ } else {
++ /* otherwise fall back to default software ECC */
++ nand->eccmode = NAND_ECC_SOFT;
++ }
++ return 0;
++}
++
++#endif
++#endif
+diff -urN u-boot-1.3.1.orig/include/configs/MPC8313ERDB.h u-boot-1.3.1/include/configs/MPC8313ERDB.h
+--- u-boot-1.3.1.orig/include/configs/MPC8313ERDB.h 2007-12-06 10:21:19.000000000 +0100
++++ u-boot-1.3.1/include/configs/MPC8313ERDB.h 2008-01-31 17:36:18.000000000 +0100
+@@ -360,6 +360,7 @@
+ #define CONFIG_CMD_MII
+ #define CONFIG_CMD_DATE
+ #define CONFIG_CMD_PCI
++#define CONFIG_CMD_NAND
+
+ #if defined(CFG_RAMBOOT)
+ #undef CONFIG_CMD_ENV