1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
|
#include <linux/types.h>
#include <linux/errno.h>
#include <linux/platform_device.h>
#include <linux/pid.h>
#include <linux/version.h>
#if LINUX_VERSION_CODE >= KERNEL_VERSION(4,11,0)
#include <linux/signalfd.h>
#endif
#include "mts_io_module.h"
#include "version.h"
#include "radio_udev_discovery.h"
/*
* radio-reset in the mts-io driver sets radio_udev_discovery to 0.
* Then it returns early if radio_udev_discovery is set to 1. The
* UDEV daemon is used to set radio_udev_discovery. Notifications
* are sent if radio_udev_discovery goes from 0 to 1.
*/
int radio_udev_discovery = 1;
struct sig_pid_radio_reset_monitor_s {
pid_t pid;
int signal;
struct pid *vpid;
};
#define PID_MAX_COUNT 20
static struct sig_pid_radio_reset_monitor_s sig_pid_radio_reset_monitor[PID_MAX_COUNT];
/* Clear an entry in the table that no longer exists.
* unlocks the mts_io_lock, toggles the rcu_read_lock,
* then puts back the mts_io_lock.
*/
static int
verify_vpid(struct sig_pid_radio_reset_monitor_s *p)
{
pid_t pid0 = p->pid;
struct pid *vpid1;
struct pid *vpid0 = p->vpid;
unsigned int vcount;
// Check to see if vpid and pid still match
if (p->pid == 0)
return 0;
if (vpid0 == NULL) {
p->pid = 0;
return 0;
}
mutex_unlock(&mts_io_mutex);
rcu_read_lock();
vpid1 = find_vpid((pid_t)pid0);
if(vpid1 != NULL) {
#if LINUX_VERSION_CODE >= KERNEL_VERSION(4,15,0)
vcount = refcount_read(&vpid1->count);
#else
vcount = atomic_read(&vpid1->count);
#endif
} else
vcount = 0;
rcu_read_unlock();
mutex_lock(&mts_io_mutex);
if ((vpid1 != vpid0) || (vpid1 == NULL))
p->pid = 0;
pr_debug("%s: verify_vpid: vpid0 0x%x vpid1 0x%x vcount %d for pid %d\n",
__FUNCTION__,
(unsigned int)vpid0, (unsigned int)vpid1, vcount, (int)pid0);
return p->pid;
}
// Need to find existing entries and allow updates. Signal 0 removes a value.
ssize_t mts_attr_store_radio_reset_monitor(struct device *dev, struct device_attribute *attr, const char *buf, size_t count)
{
long pid0;
int sig;
int i;
int found;
struct pid *vpid1, *vpid0;
int retval;
retval = sscanf(buf, "%ld %d", &pid0, &sig);
if (retval != 2)
return -EINVAL;
if (pid0 < 0)
return -EINVAL;
rcu_read_lock();
vpid0 = find_vpid((pid_t)pid0);
rcu_read_unlock();
pr_debug("%s: Try to store %ld %d 0x%x\n",
__FUNCTION__,
pid0,sig,(unsigned int)vpid0);
if (vpid0) {
/* Note that since we no longer hold the rcu lock, vpid
* could become invalid, unless it is ours.
*/
mutex_lock(&mts_io_mutex);
/* First see if we are already in the table -- search whole table */
found = -1;
for (i=0; i < PID_MAX_COUNT; i++) {
if ((sig_pid_radio_reset_monitor[i].pid == (pid_t)pid0) &&
(sig_pid_radio_reset_monitor[i].vpid == vpid0)) {
if (sig == 0) {
sig_pid_radio_reset_monitor[i].pid = 0;
sig_pid_radio_reset_monitor[i].vpid = NULL;
} else {
sig_pid_radio_reset_monitor[i].signal = sig;
mutex_unlock(&mts_io_mutex);
rcu_read_lock();
vpid0 = find_vpid((pid_t)pid0);
rcu_read_unlock();
pr_debug("%s: slot %d: pid %d, vpid 0x%x/vpid 0x%x\n",
__FUNCTION__,
i,(int)pid0,(unsigned int)vpid0,
(unsigned int)sig_pid_radio_reset_monitor[i].vpid);
mutex_lock(&mts_io_mutex);
if (vpid0 != sig_pid_radio_reset_monitor[i].vpid) {
sig_pid_radio_reset_monitor[i].pid = 0; /* Maybe exited? */
sig_pid_radio_reset_monitor[i].vpid = NULL;
pr_debug("%s: mts-io: vpid mismatch pid %d, vpid 0x%x/0x%x, sig %d, cleared %d\n",
__FUNCTION__,
(int)sig_pid_radio_reset_monitor[i].pid,
(unsigned int)sig_pid_radio_reset_monitor[i].vpid,(unsigned int)vpid0,
(unsigned int)sig_pid_radio_reset_monitor[i].signal,i);
} else {
found = i;
pr_debug("%s: mts-io: found pid %d, vpid 0x%x, sig %d\n",
__FUNCTION__,
(int)sig_pid_radio_reset_monitor[i].pid,
(unsigned int)sig_pid_radio_reset_monitor[i].vpid,
(unsigned int)sig_pid_radio_reset_monitor[i].signal);
sig = 0; // Clear any more that we find.
}
}
} // Location matches our pid
} // Loop through table
pr_debug("%s: found=%d, sig=%d\n",__FUNCTION__,found,sig);
if (found > -1) {
mutex_unlock(&mts_io_mutex);
return count;
}
if (sig == 0) {
// Nothing to clear out.
mutex_unlock(&mts_io_mutex);
return count;
}
/* Need to find an unused slot and save our signal and PID.
* Still holding mutex_lock(&mts_io_mutex)
* Find first open slot
*/
found = -1;
for (i=0; i < PID_MAX_COUNT; i++) {
if (sig_pid_radio_reset_monitor[i].pid == 0) {
sig_pid_radio_reset_monitor[i].pid = (pid_t)pid0;
sig_pid_radio_reset_monitor[i].signal = sig;
sig_pid_radio_reset_monitor[i].vpid = vpid0;
pr_debug("%s: mts-io: open slot: pid %d, vpid 0x%x, sig %d, slot %d\n",
__FUNCTION__,
(int)pid0,
(unsigned int)vpid0,
(unsigned int)sig, i);
found = i;
break;
} else {
// See if this slot may be used.
pid_t pid1 = sig_pid_radio_reset_monitor[i].pid;
if (pid1 > 0) {
mutex_unlock(&mts_io_mutex);
rcu_read_lock();
vpid1 = find_vpid((pid_t)pid1);
rcu_read_unlock();
mutex_lock(&mts_io_mutex);
// See if pid and vpid still exists
if (!vpid1 || (vpid1 != sig_pid_radio_reset_monitor[i].vpid)) {
// Make sure no one else has claimed this slot
if (pid1 == sig_pid_radio_reset_monitor[i].pid) {
sig_pid_radio_reset_monitor[i].pid = 0;
sig_pid_radio_reset_monitor[i].vpid = NULL;
i--; // Should be able to use this slot.
continue;
} // Has not been re-claimed.
} // Slot has no user or exited user
} // Verify that slot in use is still in use
} // Found an empty slot
} // Loop through all the slots.
mutex_unlock(&mts_io_mutex);
} // pid is in pid table
return count;
}
// Examples say buf is PAGE_SIZE long
ssize_t mts_attr_show_radio_reset_monitor(struct device *dev,
struct device_attribute *attr,
char *buf)
{
int count;
int max = PAGE_SIZE;
int ret;
int i;
pid_t pid1;
mutex_lock(&mts_io_mutex);
count = 0;
for (i=0; i < PID_MAX_COUNT; i++) {
pid1 = verify_vpid(sig_pid_radio_reset_monitor + i);
if (pid1 == 0) {
sig_pid_radio_reset_monitor[i].pid = 0;
sig_pid_radio_reset_monitor[i].vpid = NULL;
continue;
}
pr_debug("%s: found a pid in slot %d\n",__FUNCTION__,i);
ret = snprintf(buf+count, max, "%lu %d\n",
(unsigned long)pid1,
sig_pid_radio_reset_monitor[i].signal);
if (ret > 0) {
max -= ret;
count += ret;
}
if (max == 0)
break;
if(ret == 0)
break;
} // Loop through all the slots until we are full.
mutex_unlock(&mts_io_mutex);
return count;
}
/*
* After a radio reset, prime the flag, so if it is set to one
* after this, then we wake the processes waiting on the flag.
* Caller holds the mts_io_mutex lock.
*/
void
reset_radio_udev_discovery(void)
{
radio_udev_discovery = 0;
}
int
udev_discovered_radio(void)
{
return radio_udev_discovery;
}
ssize_t mts_attr_show_radio_udev_discovery(struct device *dev,
struct device_attribute *attr,
char *buf)
{
return sprintf(buf, "%d\n", radio_udev_discovery);
}
ssize_t mts_attr_store_radio_udev_discovery(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count)
{
int value = -1;
pid_t pid1;
struct pid *vpid0, *vpid1;
int sig, i;
int retval;
retval = sscanf(buf, "%i", &value);
if (retval != 1)
return -EINVAL;
if (radio_udev_discovery == -1) {
// Not ready
return -EPROTO;
}
// Only driver can set this to zero.
if (value == 0)
return -EINVAL;
mutex_lock(&mts_io_mutex);
if((value == 1) && (radio_udev_discovery == 0)) {
radio_udev_discovery = 1;
pr_debug("%s: mts-io: UDEV discovered cellular modem after radio-reset so signal registered processes",
__FUNCTION__);
// kill all processes that are queued
for (i=0; i < PID_MAX_COUNT; i++) {
pid1 = verify_vpid(sig_pid_radio_reset_monitor + i);
if (pid1 == 0) continue;
sig = sig_pid_radio_reset_monitor[i].signal;
vpid0 = sig_pid_radio_reset_monitor[i].vpid;
mutex_unlock(&mts_io_mutex);
rcu_read_lock();
vpid1 = find_vpid(pid1);
if (vpid1 == vpid0) {
printk(KERN_ALERT
"mts-io: %s: Sending signal %d to pid %d due to UDEV radio discovery\n",
__FUNCTION__,
sig,pid1);
kill_pid(vpid1,sig,1);
} // vpid is valid, same as registered
else {
printk(KERN_ALERT
"mts-io: %s: mismatched vpid %x/%x\n", __FUNCTION__, (unsigned int)vpid1, (unsigned int) vpid0);
}
rcu_read_unlock();
mutex_lock(&mts_io_mutex);
} // Find empty slot
} // udev wants us to wake everybody up after reset
mutex_unlock(&mts_io_mutex);
return count;
}
|