summaryrefslogtreecommitdiff
path: root/io-module/mts_io.c
blob: e509731a9616800286f153b6e4d372ffe3bd0a29 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
/*
 * MTS-IO Controller
 *
 * Copyright (C) 2014 by Multi-Tech Systems
 * Copyright (C) 2016 by Multi-Tech Systems
 *
 * Authors: James Maki <jmaki@multitech.com>
 *          Jesse Gilles <jgilles@multitech.com>
 *          Mike Fiore <mfiore@multitech.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
 *
 */

#include <linux/delay.h>
#include <linux/ioctl.h>
#include <linux/input.h>
#include <linux/cdev.h>
#include <linux/clk.h>
#include <linux/sched.h>
#include <linux/reboot.h>
#include <linux/uaccess.h>
#include <linux/gpio.h>
#include <linux/sched.h>
#include <linux/workqueue.h>
#include <linux/platform_device.h>
#include <linux/device.h>
#include <linux/bitops.h>
#include <linux/spi/spi.h>
#include <linux/i2c/at24.h>
#include <linux/kmod.h>
#include <linux/ctype.h>
#include <linux/io.h>
#include <linux/module.h>

#include "mts_io.h"

#define DRIVER_VERSION	"v1.3.3.8"
#define DRIVER_AUTHOR	"James Maki <jmaki@multitech.com>"
#define DRIVER_DESC	"MTS-IO Controller"
#define DRIVER_NAME	"mts-io"

#define PLATFORM_NAME	"mts-io"

#define LED_LS_CONTROLLABLE		0

/* on-board EEPROM */
extern uint8_t mts_id_eeprom[512];
static struct mts_id_eeprom_layout id_eeprom;

// NUM_AP should be defined from the board code
// it should be set to the value of CONFIG_MTS_NUM_ACCESSORY_PORTS
// arch/arm/mach-at91/board-dt-sam9.c
// if it is 0 or undefined, there is no accessory card support on this HW
#ifdef CONFIG_MTS_NUM_ACCESSORY_PORTS

#ifndef NUM_AP
#define NUM_AP CONFIG_MTS_NUM_ACCESSORY_PORTS
#endif

#else
#define NUM_AP 0
#endif

static uint8_t mts_hw_version;
static struct platform_device *mts_io_platform_device;
static struct attribute_group *attr_group;
static struct gpio_pin *gpio_pins;

static DEFINE_MUTEX(mts_io_mutex);

static unsigned int *timings_data = NULL;
static unsigned int timings_data_size = 0;
static unsigned int timings_data_index = 0;
static time_t timings_data_stop_seconds = 0;
static struct timer_list radio_reset_timer;
static volatile int radio_reset_timer_is_start = 0;
static struct timer_list radio_reset_available_timer;
static volatile int radio_reset_available_timer_is_start = 0;
static time_t time_now_secs(void);
static void radio_reset_available_timer_callback(unsigned long data);
static void radio_reset_timer_callback(unsigned long data);

/* generic GPIO support */
#include "gpio.c"

/* reset button handling */
#define RESET_CHECK_PER_SEC		8
#define RESET_INTERVAL		(HZ / RESET_CHECK_PER_SEC)
#define RESET_HOLD_COUNT	(RESET_CHECK_PER_SEC * 3)
#define RESET_LONG_HOLD_COUNT   (RESET_CHECK_PER_SEC * 30)

static pid_t reset_pid = -1;
static pid_t reset_count = 0;
bool sent_extra_long = false;
static int reset_short_signal = SIGUSR1;
static int reset_long_signal = SIGUSR2;
static int reset_extra_long_signal = SIGHUP;
static int reset_short_interval = RESET_HOLD_COUNT;
static int reset_long_interval = RESET_LONG_HOLD_COUNT;

static void reset_callback(struct work_struct *ignored);

static DECLARE_DELAYED_WORK(reset_work, reset_callback);

static void reset_callback(struct work_struct *ignored)
{
	struct gpio_pin *pin;
	int reset_pressed = 0;
	struct pid *vpid = NULL;

	mutex_lock(&mts_io_mutex);

	pin = gpio_pin_by_name("DEVICE_RESET");
	if (pin) {
		reset_pressed = !gpio_get_value(pin->pin.gpio);
	}

	if (reset_pid > 0) {
		vpid = find_vpid(reset_pid);
	}

	if (vpid) {
		if (reset_pressed) {
			reset_count++;
		} else {
			//Reset button has not been pressed
			if (reset_count > 0 && reset_count < reset_short_interval) {
				kill_pid(vpid, reset_short_signal, 1);
			} else if (reset_count >= reset_short_interval && reset_count < reset_long_interval) {
				kill_pid(vpid, reset_long_signal, 1);
			}

			reset_count = 0;
			sent_extra_long = false;
		}
		if (reset_count >= reset_long_interval && ! sent_extra_long) {
			kill_pid(vpid, reset_extra_long_signal, 1);
			sent_extra_long = true;
		}
	} else {
		reset_count = 0;
	}

	mutex_unlock(&mts_io_mutex);

	schedule_delayed_work(&reset_work, RESET_INTERVAL);
}

static ssize_t mts_attr_show_reset_monitor_intervals(struct device *dev, struct device_attribute *attr, char *buf)
{
	int ret;

	mutex_lock(&mts_io_mutex);

	ret = sprintf(buf, "%d %d\n", reset_short_interval / RESET_CHECK_PER_SEC, reset_long_interval / RESET_CHECK_PER_SEC);

	mutex_unlock(&mts_io_mutex);

	return ret;
}

static ssize_t mts_attr_store_reset_monitor_intervals(struct device *dev, struct device_attribute *attr, char *buf, size_t count)
{
	int short_int;
	int long_int;

	if (sscanf(buf, "%i %i", &short_int, &long_int) != 2) {
		return -EINVAL;
	}

	mutex_lock(&mts_io_mutex);

	reset_short_interval = short_int * RESET_CHECK_PER_SEC;
	reset_long_interval = long_int * RESET_CHECK_PER_SEC;

	mutex_unlock(&mts_io_mutex);

	return count;
}

static DEVICE_ATTR_MTS(dev_attr_reset_monitor_intervals, "reset-monitor-intervals",
	mts_attr_show_reset_monitor_intervals, mts_attr_store_reset_monitor_intervals);

static ssize_t mts_attr_show_reset_monitor(struct device *dev,
			struct device_attribute *attr,
			char *buf)
{
	int ret;

	mutex_lock(&mts_io_mutex);

	ret = sprintf(buf, "%d %d %d %d\n", reset_pid, reset_short_signal, reset_long_signal, reset_extra_long_signal);

	mutex_unlock(&mts_io_mutex);

	return ret;
}

static ssize_t mts_attr_store_reset_monitor(struct device *dev,
		struct device_attribute *attr, const char *buf, size_t count)
{
	pid_t pid;
	int short_signal;
	int long_signal;
	int extra_long_signal;
	int result = sscanf(buf, "%i %i %i %i", &pid, &short_signal, &long_signal, &extra_long_signal);

	if (result < 3 || result > 4) {
		return -EINVAL;
	}

        if(result == 3) {
		mutex_lock(&mts_io_mutex);

		reset_pid = pid;
		reset_short_signal = short_signal;
		reset_long_signal = long_signal;

		mutex_unlock(&mts_io_mutex);
	} else {
		mutex_lock(&mts_io_mutex);

		reset_pid = pid;
		reset_short_signal = short_signal;
		reset_long_signal = long_signal;
		reset_extra_long_signal = extra_long_signal;

		mutex_unlock(&mts_io_mutex);
	}

	return count;
}

static DEVICE_ATTR_MTS(dev_attr_reset_monitor, "reset-monitor",
	mts_attr_show_reset_monitor, mts_attr_store_reset_monitor);
static DEVICE_ATTR_RO_MTS(dev_attr_reset, "reset", mts_attr_show_gpio_pin);

/* active-low socket modem reset */
static ssize_t mts_attr_store_radio_reset(struct device *dev,
		struct device_attribute *attr, const char *buf, size_t count)
{
	int value;
	int err;
	struct gpio_pin *pin;

	if (sscanf(buf, "%i", &value) != 1) {
		return -EINVAL;
	}
	if (value != 0) {
		return -EINVAL;
	}

	/* check reset timings is enabled */
	if (NULL != timings_data) {
		/* check reset timer is started */
		if (radio_reset_timer_is_start == 1) {
			log_info("radio reset timer is running. \n");
			return count;
		}

		/* check reset timer available is started */
		if (radio_reset_available_timer_is_start == 1) {
			del_timer(&radio_reset_available_timer);
			radio_reset_available_timer_is_start = 0;
		}

		/* reset timer not started, start it */
		mod_timer(&radio_reset_timer, jiffies + msecs_to_jiffies((timings_data[timings_data_index]) * 1000));
		//log_info("radio reset timer is start = [%d]\n", time_now_secs());
		/* save timings_data_stop_seconds */
		timings_data_stop_seconds = timings_data[timings_data_index] + time_now_secs();
		radio_reset_timer_is_start = 1;
	}

	log_info("radio is reset\n");

	pin = gpio_pin_by_name("RADIO_RESET");

	if (!pin) {
		return -ENODEV;
	}

	mutex_lock(&mts_io_mutex);

	// 250ms low reset
	err = reset_gpio_pin(pin, 250, 0);

	mutex_unlock(&mts_io_mutex);

	if (err) {
		return err;
	}

	return count;
}

static DEVICE_ATTR_MTS(dev_attr_radio_reset, "radio-reset",
	mts_attr_show_gpio_pin, mts_attr_store_radio_reset);

/* shared gpio attributes */
static DEVICE_ATTR_MTS(dev_attr_radio_power, "radio-power",
	mts_attr_show_gpio_pin, mts_attr_store_gpio_pin);

/* backoff-timers */
static time_t time_now_secs(void)
{
	struct timespec ts = current_kernel_time();
	return ts.tv_sec;
}

static void radio_reset_available_timer_callback( unsigned long data )
{
	/* do your timer stuff here */
	//log_info("radio_reset_available_timer_callback\n");
	//log_info("radio reset available timer is stop = [%d]\n", time_now_secs());

	/* zero timings_data_index */
	timings_data_index = 0;
	//log_info("timings data index is zero = [%d]\n", timings_data_index);
	radio_reset_available_timer_is_start = 0;
}

static void radio_reset_timer_callback( unsigned long data )
{
	/* do your timer stuff here */
	//log_info("radio_reset_timer_callback\n");
	//log_info("radio reset timer is stop = [%d]\n", time_now_secs());

	/* increment timings_data_index */
	timings_data_index++;
	if(timings_data_index >= timings_data_size) {
		timings_data_index = timings_data_size-1;
	}

	//log_info("timings data index = [%d]\n", timings_data_index);

	/* reset available timer not started, start it */
	mod_timer(&radio_reset_available_timer, jiffies + msecs_to_jiffies((timings_data[timings_data_index]) * 1000));
	//log_info("radio reset available timer is start = [%d]\n", time_now_secs());
	radio_reset_available_timer_is_start = 1;
	radio_reset_timer_is_start = 0;
}

static ssize_t mts_attr_store_radio_reset_backoffs(struct device *dev,
		struct device_attribute *attr, const char *buf, size_t count)
{
	char *timings_data_str = NULL;
	const char delimiter[] = " ";
	char * pch = NULL;
	unsigned int size = 0;

	/* free previous timings_data */
	if (NULL != timings_data) {
		/* stop timers */
		del_timer(&radio_reset_timer);
		del_timer(&radio_reset_available_timer);
		timings_data_index = 0;
		radio_reset_timer_is_start = 0;
		radio_reset_available_timer_is_start = 0;

		//log_info("free previous timings_data\n");
		kfree(timings_data);
		timings_data = NULL;
		timings_data_size = 0;
	}

	/* make a copy */
	if( NULL == (timings_data_str = kzalloc((strlen(buf) + 1), GFP_KERNEL)) ){
		log_error("can`t allocate memory\n");
		return -EINVAL;
	}

        //log_info("radio_reset_backoffs buf: [%s]", buf);
        strncpy(timings_data_str, buf, (strlen(buf) + 1));

	/* get number of tokens */
	while (NULL != (pch = strsep (&timings_data_str, delimiter))) {
		int value = 0;
		sscanf(pch, "%d", &value);
	        //log_info("radio reset backoffs pch = [%s]\n", pch);
		if (value > 0){
			size++;
			if (NULL == timings_data) {
				/* make alloc */
				if (NULL == (timings_data = kmalloc(sizeof(unsigned int), GFP_KERNEL))) {
					log_error("radio reset backoffs can`t allocate memory\n");
					goto free;
				}
			} else {
				/* make realloc */
				if (NULL == (timings_data = krealloc(timings_data, size * sizeof(unsigned int), GFP_KERNEL))) {
					log_error("radio reset backoffs can`t allocate memory\n");
					goto free;
				}
			}
			/* save timings data */
			sscanf(pch, "%d", &timings_data[size-1]);
		}
	}

	timings_data_size = size;
	//log_info("timings_data_size = %d\n", timings_data_size);

	if (NULL != timings_data_str) {
		/* free timings_data_str */
                /* never get here in happy path */
		kfree(timings_data_str);
	}
	return count;

free:
	if (NULL != timings_data_str) {
		/* free timings_data_str */
		kfree(timings_data_str);
	}

	if (NULL != timings_data) {
		kfree(timings_data);
		timings_data = NULL;
		timings_data_size = 0;
	}
	return -EINVAL;
}

static ssize_t mts_attr_store_radio_reset_backoffs_index(struct device *dev,
		struct device_attribute *attr, const char *buf, size_t count)
{
	int value;

	if (sscanf(buf, "%d", &value) != 1) {
		return -EINVAL;
	}

	if ((value < 0) || (value >= timings_data_size)) {
		log_error("incorrect data\n");
		return -EINVAL;
	}

	/* stop timers */
	del_timer(&radio_reset_timer);
	del_timer(&radio_reset_available_timer);
	radio_reset_timer_is_start = 0;
	radio_reset_available_timer_is_start = 0;
	timings_data_index = value;

	return count;
}

static ssize_t mts_attr_show_radio_reset_backoffs(struct device *dev,
		struct device_attribute *attr, char *buf)
{
	int ret = 0;
	size_t i = 0;
        size_t buf_left = 0;

	if (NULL != timings_data) {
		for(i = 0; i < timings_data_size; ++i) {
                        buf_left = PAGE_SIZE - ret;
			ret += snprintf(buf += strlen(buf), buf_left, "%d ", timings_data[i]);
		}
	}
	
        if (ret > 0) {
		ret -= 1;
	}

	return ret;
}

static ssize_t mts_attr_show_radio_reset_backoff_index(struct device *dev,
		struct device_attribute *attr, char *buf)
{
	ssize_t value;

	if (strcmp(attr->attr.name, "radio-reset-backoff-index") == 0) {
		value = sprintf(buf, "%d", timings_data_index);
	}
	else {
		log_error("attribute '%s' not found", attr->attr.name);
		value = -1;
	}

	return value;
}

static ssize_t mts_attr_show_radio_reset_backoff_seconds(struct device *dev,
			struct device_attribute *attr, char *buf)
{
	ssize_t value;

	if (strcmp(attr->attr.name, "radio-reset-backoff-seconds") == 0) {
		if (radio_reset_timer_is_start == 1) {
			value = sprintf(buf, "%lu",  (timings_data_stop_seconds - time_now_secs()));
		} else {
			value = sprintf(buf, "%d", 0);
		}
	} else {
		log_error("attribute '%s' not found", attr->attr.name);
		value = -1;
	}

	return value;
}

static DEVICE_ATTR_MTS(dev_attr_radio_reset_backoffs, "radio-reset-backoffs",
	mts_attr_show_radio_reset_backoffs, mts_attr_store_radio_reset_backoffs);

static DEVICE_ATTR_MTS(dev_attr_radio_reset_backoff_index, "radio-reset-backoff-index",
	mts_attr_show_radio_reset_backoff_index, mts_attr_store_radio_reset_backoffs_index);

static DEVICE_ATTR_RO_MTS(dev_attr_radio_reset_backoff_seconds, "radio-reset-backoff-seconds",
	mts_attr_show_radio_reset_backoff_seconds);

/* shared gpio-based LEDs */
static DEVICE_ATTR_MTS(dev_attr_led_status, "led-status",
	mts_attr_show_gpio_pin, mts_attr_store_gpio_pin);
static DEVICE_ATTR_MTS(dev_attr_led_a_gpio, "led-a",
	mts_attr_show_gpio_pin, mts_attr_store_gpio_pin);

#if LED_LS_CONTROLLABLE
static DEVICE_ATTR_MTS(dev_attr_led_ls, "led-ls",
	mts_attr_show_gpio_pin, mts_attr_store_gpio_pin);
#else
static DEVICE_ATTR_RO_MTS(dev_attr_led_ls, "led-ls",
	mts_attr_show_gpio_pin);
#endif

static DEVICE_ATTR_MTS(dev_attr_led_b_gpio, "led-b",
	mts_attr_show_gpio_pin, mts_attr_store_gpio_pin);

static DEVICE_ATTR_MTS(dev_attr_led_cd_gpio, "led-cd",
	mts_attr_show_gpio_pin, mts_attr_store_gpio_pin);
static DEVICE_ATTR_MTS(dev_attr_led_c_gpio, "led-c",
	mts_attr_show_gpio_pin, mts_attr_store_gpio_pin);

static DEVICE_ATTR_MTS(dev_attr_led_sig1_gpio, "led-sig1",
	mts_attr_show_gpio_pin, mts_attr_store_gpio_pin);
static DEVICE_ATTR_MTS(dev_attr_led_sig2_gpio, "led-sig2",
	mts_attr_show_gpio_pin, mts_attr_store_gpio_pin);
static DEVICE_ATTR_MTS(dev_attr_led_sig3_gpio, "led-sig3",
	mts_attr_show_gpio_pin, mts_attr_store_gpio_pin);

static DEVICE_ATTR_MTS(dev_attr_led_d_gpio, "led-d",
	mts_attr_show_gpio_pin, mts_attr_store_gpio_pin);
static DEVICE_ATTR_MTS(dev_attr_led_e_gpio, "led-e",
	mts_attr_show_gpio_pin, mts_attr_store_gpio_pin);

/* eeprom info */
static ssize_t mts_attr_show_product_info(struct device *dev,
			struct device_attribute *attr,
			char *buf)
{
	int i;
	ssize_t value;
	
	if (strcmp(attr->attr.name, "vendor-id") == 0) {
		value = sprintf(buf, "%.32s\n", id_eeprom.vendor_id);
	} else if (strcmp(attr->attr.name, "product-id") == 0) {
		value = sprintf(buf, "%.32s\n", id_eeprom.product_id);
	} else if (strcmp(attr->attr.name, "device-id") == 0) {
		value = sprintf(buf, "%.32s\n", id_eeprom.device_id);
	} else if (strcmp(attr->attr.name, "uuid") == 0) {
		//Loop Through UUID Bytes and print them in HEX

		for(i = 0; i < 16; i++) {
			value = sprintf(buf, "%02X", id_eeprom.uuid[i]);
			if(value == -1) {
				return value;
			}
			buf += value;
		}
		value = sprintf(buf, "\n");
		if(value == -1) {
			return value;
		}
		value = 33;	//16*2 (ASCII HEX) + 1 ('\n')
	} else if (strcmp(attr->attr.name, "hw-version") == 0) {
		value = sprintf(buf, "%.32s\n", id_eeprom.hw_version);
	} else if (strcmp(attr->attr.name, "imei") == 0) {
		value = sprintf(buf, "%.32s\n", id_eeprom.imei);
	} else if (strcmp(attr->attr.name, "mac-eth") == 0) {
		value = sprintf(buf, "%02X:%02X:%02X:%02X:%02X:%02X\n",
			id_eeprom.mac_addr[0],
			id_eeprom.mac_addr[1],
			id_eeprom.mac_addr[2],
			id_eeprom.mac_addr[3],
			id_eeprom.mac_addr[4],
			id_eeprom.mac_addr[5]);
	} else {
		log_error("attribute '%s' not found", attr->attr.name);
		value = -1;
	}

	return value;
}

static DEVICE_ATTR_RO_MTS(dev_attr_vendor_id, "vendor-id",
	mts_attr_show_product_info);
static DEVICE_ATTR_RO_MTS(dev_attr_product_id, "product-id",
	mts_attr_show_product_info);
static DEVICE_ATTR_RO_MTS(dev_attr_device_id, "device-id",
	mts_attr_show_product_info);
static DEVICE_ATTR_RO_MTS(dev_attr_uuid, "uuid",
	mts_attr_show_product_info);
static DEVICE_ATTR_RO_MTS(dev_attr_hw_version, "hw-version",
	mts_attr_show_product_info);
static DEVICE_ATTR_RO_MTS(dev_attr_imei, "imei",
	mts_attr_show_product_info);
static DEVICE_ATTR_RO_MTS(dev_attr_eth_mac, "mac-eth",
	mts_attr_show_product_info);

/* include per-device pins and attributes */
#include "mtcdt.c"
#include "mtp.c"

#if NUM_AP > 0

/* accessory card EEPROMs */
extern uint8_t mts_ap_eeprom[NUM_AP][512];
static struct mts_ap_eeprom_layout ap_eeprom[NUM_AP];
/* kobject pointers for the apX subdirectories that correspond to the accessory ports */
static struct kobject *ap_subdirs[NUM_AP];
/* attribute groups for the accessory ports*/
static struct attribute_group ap_attr_groups[NUM_AP];
/* info for accessory port (contains function pointers for setup and teardown and and useful info) */
static struct ap_info* port_info[NUM_AP];

/* accessory card support */
#include "mtac.c"
#include "mtac_gpiob.c"
#include "mtac_mfser.c"
#include "mtac_eth.c"
#include "mtac_lora.c"

static bool load_port(int port) {
	int port_index = port - 1;
	memcpy(&ap_eeprom[port_index], mts_ap_eeprom[port_index], sizeof(mts_ap_eeprom[port_index]));

	if (mts_ap_eeprom[port_index][0] == 0xFF) {
		log_error("uninitialized eeprom on accessory card %d", port);
	} else if (mts_ap_eeprom[port_index][0] == 0x00) {
		log_info("no accessory card inserted in port %d", port);
	} else {
		port_info[port_index] = kzalloc(sizeof(struct ap_info), GFP_KERNEL);
		if (! port_info[port_index]) {
			log_error("alloc of port info failed");
			return false;
		}

		if (strstr(ap_eeprom[port_index].product_id, PRODUCT_ID_MTAC_GPIOB)) {
			if (! set_gpiob_info(port_info[port_index])) {
				log_error("failed to set up gpiob port info");
				return false;
			}
		} else if (strstr(ap_eeprom[port_index].product_id, PRODUCT_ID_MTAC_MFSER)) {
			if (! set_mfser_info(port_info[port_index])) {
				log_error("failed to set up mfser port info");
				return false;
			}
		} else if (strstr(ap_eeprom[port_index].product_id, PRODUCT_ID_MTAC_ETH)) {
			if (! set_eth_info(port_info[port_index])) {
				log_error("failed to set up eth port info");
				return false;
			}
		} else if (strstr(ap_eeprom[port_index].product_id, PRODUCT_ID_MTAC_LORA)) {
			if (! set_lora_info(port_info[port_index])) {
				log_error("failed to set up lora port info");
				return false;
			}
		} else {
			log_error("unknown accessory card [%s] in port %d", ap_eeprom[port_index].product_id, port);
			kfree(port_info[port_index]);
			port_info[port_index] = NULL;
			return false;
		}

		log_info("accessory card %d vendor-id: %.32s", port, ap_eeprom[port_index].vendor_id);
		log_info("accessory card %d product-id: %.32s", port,  ap_eeprom[port_index].product_id);
		log_info("accessory card %d device-id: %.32s", port,  ap_eeprom[port_index].device_id);
		log_info("accessory card %d hw-version: %.32s", port,  ap_eeprom[port_index].hw_version);
		if (strncmp(ap_eeprom[port_index].product_id, PRODUCT_ID_MTAC_ETH, strlen(PRODUCT_ID_MTAC_ETH)) == 0) {
			log_info("accessory card %d mac-addr: %02X:%02X:%02X:%02X:%02X:%02X",
			    port,
			    ap_eeprom[port_index].mac_addr[0],
			    ap_eeprom[port_index].mac_addr[1],
			    ap_eeprom[port_index].mac_addr[2],
			    ap_eeprom[port_index].mac_addr[3],
			    ap_eeprom[port_index].mac_addr[4],
			    ap_eeprom[port_index].mac_addr[5]);
		}
		if (strncmp(ap_eeprom[port_index].product_id, PRODUCT_ID_MTAC_LORA, strlen(PRODUCT_ID_MTAC_LORA)) == 0) {
			log_info("accessory card %d eui: %02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X",
			    port,
			    ap_eeprom[port_index].eui[0],
			    ap_eeprom[port_index].eui[1],
			    ap_eeprom[port_index].eui[2],
			    ap_eeprom[port_index].eui[3],
			    ap_eeprom[port_index].eui[4],
			    ap_eeprom[port_index].eui[5],
			    ap_eeprom[port_index].eui[6],
			    ap_eeprom[port_index].eui[7]);
		}

		if (! port_info[port_index]->setup(port)) {
			log_error("accessory port %d setup failed", port);
			port_info[port_index]->teardown(port);
			kfree(port_info[port_index]);
			port_info[port_index] = NULL;
			return false;
		}
	}

	return true;
}

static void init_accessory_ports(void)
{
	int port_index;

	for (port_index = 0; port_index < NUM_AP; port_index++) {
        port_info[port_index] = NULL;
        if (! load_port(port_index+1)) {
            log_error("failed to load accessory card in port %d", port_index);
        }
    }
}

static void teardown_accessory_ports(void)
{
    int port_index;

    for (port_index = 0; port_index < NUM_AP; port_index++) {
        if (port_info[port_index]) {
            port_info[port_index]->teardown(port_index+1);
            kfree(port_info[port_index]);
        }
    }
}
#else /* NUM_AP > 0 */
static void init_accessory_ports(void) {}
static void teardown_accessory_ports(void) {}
#endif

struct attribute *freelater = NULL; // Storage to free when driver is unloaded.

static int mts_id_eeprom_load()
{
	int i;
	char buf[64] = {0};
	char* ptr;
	int attr_blength;     // Byte length of base attribute array
	int current_blength;  // Current length in bytes of attribute array
	int current_count;    // Number of items in array
	struct attribute **all_attrs = NULL;
	mts_hw_version = MTCDT_0_0;

	//The mts_id_eeprom buffer is initialize once on boot
	//reloading the mts_io.ko module will not reinitialize this buffer
	//only rebooting will reinitialize this buffer
	memcpy(&id_eeprom, mts_id_eeprom, sizeof(mts_id_eeprom));

	if (mts_id_eeprom[0] == 0xFF) {
		log_error("uninitialized eeprom");
		return -EIO;
	} else if (strncmp(id_eeprom.hw_version, HW_VERSION_MTP_0_0, strlen(HW_VERSION_MTP_0_0)) == 0)  {
		attr_group = &mtp_0_0_platform_attribute_group;
		gpio_pins = gpio_pins_mtp_0_0;
		mts_hw_version = MTP_0_0;
		log_info("detected board %s", HW_VERSION_MTP_0_0);
	}
	else if (strncmp(id_eeprom.hw_version, HW_VERSION_MTCDT_0_1, strlen(HW_VERSION_MTCDT_0_1)) == 0)  {
		attr_blength = sizeof  mtcdt_0_1_platform_attributes;
		if(DEVICE_CAPA(id_eeprom.capa, CAPA_WIFI_BT)) {
			attr_blength += sizeof mtcdt_0_1_wifi_bt_attributes;
		}
		if(DEVICE_CAPA(id_eeprom.capa, CAPA_GNSS)) {
			attr_blength += sizeof mtcdt_0_1_gnss_attributes;
		}
		if (attr_blength != sizeof mtcdt_0_1_platform_attributes) {
			freelater = all_attrs = kmalloc(attr_blength,GFP_KERNEL);
			current_blength = sizeof mtcdt_0_1_platform_attributes - sizeof (struct attribute *);
			current_count = current_blength/(sizeof (struct attribute *));
			memcpy(all_attrs,mtcdt_0_1_platform_attributes,current_blength);
			if(DEVICE_CAPA(id_eeprom.capa, CAPA_WIFI_BT)) {
				memcpy(all_attrs + current_count,mtcdt_0_1_wifi_bt_attributes,sizeof mtcdt_0_1_wifi_bt_attributes);
				current_count += sizeof mtcdt_0_1_wifi_bt_attributes / (sizeof  (struct attribute *));
			}
			if(DEVICE_CAPA(id_eeprom.capa, CAPA_GNSS)) {
				attr_blength += sizeof mtcdt_0_1_gnss_attributes;
				memcpy(all_attrs + current_count,mtcdt_0_1_gnss_attributes,sizeof mtcdt_0_1_gnss_attributes);
				current_count += sizeof mtcdt_0_1_wifi_bt_attributes / (sizeof  (struct attribute *));
			}
			all_attrs[current_count] = (struct attribute *)NULL;
			mtcdt_0_1_platform_attribute_group.attrs = all_attrs;
		}

		attr_group = &mtcdt_0_1_platform_attribute_group;
		gpio_pins = gpio_pins_mtcdt_0_1;
		mts_hw_version = MTCDT_0_1;
		log_info("detected board %s", HW_VERSION_MTCDT_0_1);
	} else {
		attr_group = &mtcdt_platform_attribute_group;
		gpio_pins = gpio_pins_mtcdt_0_0;
		mts_hw_version = MTCDT_0_0;
		log_info("detected board %s", HW_VERSION_MTCDT_0_0);
	}

	log_info("sizeof: %lu", (unsigned long) sizeof(struct mts_id_eeprom_layout));
	log_info("vendor-id: %.32s", id_eeprom.vendor_id);
	log_info("product-id: %.32s",  id_eeprom.product_id);
	log_info("device-id: %.32s",  id_eeprom.device_id);
	log_info("hw-version: %.32s",  id_eeprom.hw_version);
	log_info("mac-addr: %02X:%02X:%02X:%02X:%02X:%02X",
            id_eeprom.mac_addr[0],
            id_eeprom.mac_addr[1],
            id_eeprom.mac_addr[2],
            id_eeprom.mac_addr[3],
            id_eeprom.mac_addr[4],
            id_eeprom.mac_addr[5]);
	
	log_info("imei: %.32s",  id_eeprom.imei);
	log_info("capa-gps: %s", DEVICE_CAPA(id_eeprom.capa, CAPA_GPS) ? "yes" : "no");
	log_info("capa-din: %s", DEVICE_CAPA(id_eeprom.capa, CAPA_DIN) ? "yes" : "no");
	log_info("capa-dout: %s", DEVICE_CAPA(id_eeprom.capa, CAPA_DOUT) ? "yes" : "no");
	log_info("capa-adc: %s", DEVICE_CAPA(id_eeprom.capa, CAPA_ADC) ? "yes" : "no");
	log_info("capa-wifi: %s", DEVICE_CAPA(id_eeprom.capa, CAPA_WIFI) ? "yes" : "no");
	log_info("capa-bluetooth: %s", DEVICE_CAPA(id_eeprom.capa, CAPA_BLUETOOTH) ? "yes" : "no");
	if (DEVICE_CAPA(id_eeprom.capa, CAPA_BLUETOOTH)) {
		log_info("mac-bluetooth: %02X:%02X:%02X:%02X:%02X:%02X",
			id_eeprom.mac_bluetooth[0],
			id_eeprom.mac_bluetooth[1],
			id_eeprom.mac_bluetooth[2],
			id_eeprom.mac_bluetooth[3],
			id_eeprom.mac_bluetooth[4],
			id_eeprom.mac_bluetooth[5]);
	}
	if (DEVICE_CAPA(id_eeprom.capa, CAPA_WIFI)) {
		log_info("mac-wifi: %02X:%02X:%02X:%02X:%02X:%02X",
			id_eeprom.mac_wifi[0],
			id_eeprom.mac_wifi[1],
			id_eeprom.mac_wifi[2],
			id_eeprom.mac_wifi[3],
			id_eeprom.mac_wifi[4],
			id_eeprom.mac_wifi[5]);
	}
	//Loop Through UUID Bytes and print them in HEX
	ptr = (char*)buf;
	for(i = 0; i < 16; i++) {
		ptr += sprintf(ptr, "%02X", id_eeprom.uuid[i]);
	}
	log_info("uuid: %s", (char*)buf);

	return 0;
}

static void cleanup(void)
{
	log_info("cleaning up....");
	if (mts_io_platform_device) {
		platform_device_unregister(mts_io_platform_device);
	}

	teardown_accessory_ports();
	if(freelater) {
		kfree(freelater);
		freelater = NULL;
	}
	log_info("done cleaning up....");
}

static int __init mts_io_init(void)
{
	struct gpio_pin *pin;

	int ret;

	log_info("init: " DRIVER_VERSION);
	
	ret = mts_id_eeprom_load();
	if (ret) {
		cleanup();
		return ret;
	}

	mts_io_platform_device = platform_device_alloc(PLATFORM_NAME, -1);
	if (!mts_io_platform_device) {
		cleanup();
		return -ENOMEM;
	}

	ret = platform_device_add(mts_io_platform_device);
	if (ret) {
		cleanup();
		return ret;
	}

	init_accessory_ports();

	ret = sysfs_create_group(&mts_io_platform_device->dev.kobj, attr_group);
	if (ret) {
		cleanup();
		return ret;
	}

	for (pin = gpio_pins; *pin->name; pin++) {
		log_info("MTS: name %s: capability=%x, DEVICE_CAPA=%d",pin->name,pin->capability,id_eeprom.capa[DEVICE_CAPA_INDEX(pin->capability)]);
		if (pin->capability == 0 || DEVICE_CAPA(id_eeprom.capa,pin->capability)) {
			ret = gpio_request_one(pin->pin.gpio, pin->pin.flags, pin->pin.label);
			if (ret)
				log_debug("could not request pin %s (%d) but it could have already been requested under a different pin name", pin->name, ret);
		}
	}

	// start the reset handler
	reset_callback(NULL);

	/* init timers */
	setup_timer(&radio_reset_timer, radio_reset_timer_callback, 0);
	setup_timer(&radio_reset_available_timer, radio_reset_available_timer_callback, 0);

	return 0;
}

static void __exit mts_io_exit(void)
{
	/* delete radio_reset_timer */
	del_timer(&radio_reset_timer);
	/* delete radio_reset_available_timer */
	del_timer(&radio_reset_available_timer);

	cancel_delayed_work_sync(&reset_work);

	cleanup();

	log_info("exiting");
}

module_init(mts_io_init);
module_exit(mts_io_exit);

MODULE_AUTHOR(DRIVER_AUTHOR);
MODULE_DESCRIPTION(DRIVER_DESC);
MODULE_VERSION(DRIVER_VERSION);
MODULE_LICENSE("GPL");

MODULE_ALIAS("mts-io-ap1-dout");
MODULE_ALIAS("mts-io-ap1-din");
MODULE_ALIAS("mts-io-ap1-adc");
MODULE_ALIAS("mts-io-ap2-dout");
MODULE_ALIAS("mts-io-ap2-din");
MODULE_ALIAS("mts-io-ap2-adc");