/* * MTCDP IO Controller * * Copyright (C) 2010 by Multi-Tech Systems * * Author: James Maki * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "mts_io.h" #define DRIVER_VERSION "v0.4.0" #define DRIVER_AUTHOR "James Maki " #define DRIVER_DESC "MTCDP IO Controller" #define DRIVER_NAME "mts-io" #define PLATFORM_NAME "mtcdp" #define DEBUG 0 #define __log(level, name, format, args...) \ printk(level "[" name "] " DRIVER_NAME ":%s:%d: " format "\n" , \ __func__ , __LINE__ , ## args) #define log_emerg(format, args...) __log(KERN_EMERG, "EMERG", format , ## args) #define log_alert(format, args...) __log(KERN_ALERT, "ALERT", format , ## args) #define log_crit(format, args...) __log(KERN_CRIT, "CRIT", format , ## args) #define log_error(format, args...) __log(KERN_ERR, "ERROR", format , ## args) #define log_warning(format, args...) __log(KERN_WARNING, "WARNING", format , ## args) #define log_notice(format, args...) __log(KERN_NOTICE, "NOTICE", format , ## args) #define log_info(format, args...) __log(KERN_INFO, "INFO", format , ## args) #if DEBUG # define log_debug(format, args...) __log(KERN_DEBUG, "DEBUG", format , ## args) #else # define log_debug(format, args...) do {} while (0) #endif enum { LED_OFF, LED_ON, LED_FLASHING, }; #define LED_STATUS_CONTROLLABLE 0 #define LED_LS_CONTROLLABLE 0 #define USBH2_PS_CONTROLLABLE 0 #if LED_STATUS_CONTROLLABLE static int led_mode_status = LED_OFF; #endif #define SOUT_LED_CD_BIT BIT(0) #define SOUT_EXTSERIAL_RI_BIT BIT(1) #define SOUT_EXTSERIAL_DSR_BIT BIT(2) #define SOUT_LED_DTR BIT(3) #define SOUT_LED_SIG1_BIT BIT(4) #define SOUT_LED_SIG2_BIT BIT(5) #define SOUT_LED_SIG3_BIT BIT(6) #define SOUT_EXTSERIAL_DCD_BIT BIT(7) enum { GPIO_DIR_INPUT, GPIO_DIR_OUTPUT, }; struct gpio_pin { char name[32]; unsigned pin; int direction; int output_value; int use_pullup; }; static struct gpio_pin *gpio_pins; static struct gpio_pin gpio_pins_mtcdp_0_0[] = { { .name = "ENIO", .pin = AT91_PIN_PC15, .direction = GPIO_DIR_OUTPUT, .output_value = 1, .use_pullup = 0, }, { .name = "ETH0_ENABLED", .pin = AT91_PIN_PB31, .direction = GPIO_DIR_OUTPUT, .output_value = 1, .use_pullup = 0, }, { .name = "RADIO_RESET", .pin = AT91_PIN_PB30, .direction = GPIO_DIR_OUTPUT, .output_value = 1, .use_pullup = 0, }, { .name = "DEVICE_RESET", .pin = AT91_PIN_PA22, .direction = GPIO_DIR_INPUT, .output_value = 0, .use_pullup = 0, }, { .name = "LS_LED", .pin = AT91_PIN_PC9, #if LED_LS_CONTROLLABLE .direction = GPIO_DIR_OUTPUT, #else .direction = GPIO_DIR_INPUT, #endif .output_value = 1, .use_pullup = 0, }, #if LED_STATUS_CONTROLLABLE { .name = "STATUS_LED", .pin = AT91_PIN_PA30, .direction = GPIO_DIR_OUTPUT, .output_value = 1, .use_pullup = 0, }, #endif { .name = "RSERSRC", .pin = AT91_PIN_PC7, .direction = GPIO_DIR_OUTPUT, .output_value = 1, .use_pullup = 0, }, { .name = "DTR1", .pin = AT91_PIN_PC10, .direction = GPIO_DIR_INPUT, .output_value = 0, .use_pullup = 0, }, { }, }; static struct gpio_pin gpio_pins_mtcdp_1_0[] = { { .name = "ENIO", .pin = AT91_PIN_PC15, .direction = GPIO_DIR_OUTPUT, .output_value = 1, .use_pullup = 0, }, { .name = "ETH0_ENABLED", .pin = AT91_PIN_PB31, .direction = GPIO_DIR_OUTPUT, .output_value = 1, .use_pullup = 0, }, { .name = "RADIO_RESET", .pin = AT91_PIN_PB30, .direction = GPIO_DIR_OUTPUT, .output_value = 1, .use_pullup = 0, }, { .name = "DEVICE_RESET", .pin = AT91_PIN_PA22, .direction = GPIO_DIR_INPUT, .output_value = 0, .use_pullup = 0, }, { .name = "LS_LED", .pin = AT91_PIN_PC9, #if LED_LS_CONTROLLABLE .direction = GPIO_DIR_OUTPUT, #else .direction = GPIO_DIR_INPUT, #endif .output_value = 1, .use_pullup = 0, }, #if LED_STATUS_CONTROLLABLE { .name = "STATUS_LED", .pin = AT91_PIN_PA30, .direction = GPIO_DIR_OUTPUT, .output_value = 1, .use_pullup = 0, }, #endif { .name = "RSERSRC", .pin = AT91_PIN_PC7, .direction = GPIO_DIR_OUTPUT, .output_value = 1, .use_pullup = 0, }, { .name = "TXD1", .pin = AT91_PIN_PB17, .direction = GPIO_DIR_OUTPUT, .output_value = 0, .use_pullup = 0, }, { .name = "DTR1", .pin = AT91_PIN_PB18, .direction = GPIO_DIR_INPUT, .output_value = 0, .use_pullup = 0, }, { .name = "USBH2_PS_OC", .pin = AT91_PIN_PB19, .direction = GPIO_DIR_INPUT, .output_value = 0, .use_pullup = 0, }, #if USBH2_PS_CONTROLLABLE { .name = "USBH2_PS_ENABLED", .pin = AT91_PIN_PB20, .direction = GPIO_DIR_OUTPUT, .output_value = 0, .use_pullup = 0, }, #endif { }, }; struct gpio_pin *gpio_pin_by_name(const char *name) { struct gpio_pin *pin; for (pin = gpio_pins; *pin->name; pin++) { if (!strcmp(pin->name, name)) { return pin; } } log_error("pin named %s not found", name); return NULL; } extern uint8_t mts_id_eeprom[512]; static struct mts_id_eeprom_layout id_eeprom; static int mts_id_eeprom_load(void) { memcpy(&id_eeprom, mts_id_eeprom, sizeof(mts_id_eeprom)); if (mts_id_eeprom[0] == 0xFF) { log_error("uninitialized eeprom"); return -EIO; } else if (mts_id_eeprom[0] == 0x00) { strncpy(id_eeprom.vendor_id, VENDOR_ID_MULTITECH, sizeof(id_eeprom.vendor_id) - 1); strncpy(id_eeprom.product_id, PRODUCT_ID_MTCDP_E1_DK, sizeof(id_eeprom.product_id) - 1); strncpy(id_eeprom.device_id, "", sizeof(id_eeprom.device_id) - 1); strncpy(id_eeprom.hw_version, HW_VERSION_MTCDP_0_0, sizeof(id_eeprom.hw_version) - 1); DEVICE_CAPA_SET(id_eeprom.capa, CAPA_GPS); gpio_pins = gpio_pins_mtcdp_0_0; } else { gpio_pins = gpio_pins_mtcdp_1_0; } log_info("sizeof: %lu", (unsigned long) sizeof(struct mts_id_eeprom_layout)); log_info("vendor-id: %.32s", id_eeprom.vendor_id); log_info("product-id: %.32s", id_eeprom.product_id); log_info("device-id: %.32s", id_eeprom.device_id); log_info("hw-version: %.32s", id_eeprom.hw_version); log_info("mac-addr: %02X:%02X:%02X:%02X:%02X:%02X", id_eeprom.mac_addr[0], id_eeprom.mac_addr[1], id_eeprom.mac_addr[2], id_eeprom.mac_addr[3], id_eeprom.mac_addr[4], id_eeprom.mac_addr[5]); log_info("imei: %.32s", id_eeprom.imei); log_info("capa-gps: %s", DEVICE_CAPA(id_eeprom.capa, CAPA_GPS) ? "yes" : "no"); log_info("capa-din: %s", DEVICE_CAPA(id_eeprom.capa, CAPA_DIN) ? "yes" : "no"); log_info("capa-dout: %s", DEVICE_CAPA(id_eeprom.capa, CAPA_DOUT) ? "yes" : "no"); log_info("capa-adc: %s", DEVICE_CAPA(id_eeprom.capa, CAPA_ADC) ? "yes" : "no"); return 0; } static struct spi_device *spi_sout_dev; static u8 spi_sout_value; static DEFINE_MUTEX(spi_sout_mutex); static unsigned int sout_max_speed_hz = 1 * 1000 * 1000; module_param(sout_max_speed_hz, uint, S_IRUGO); MODULE_PARM_DESC( sout_max_speed_hz, "Maximum clock rate to be used with this device (default: 1 MHz)" ); static struct spi_device *spi_dout_dev; static u8 spi_dout_value; static DEFINE_MUTEX(spi_dout_mutex); static unsigned int dout_max_speed_hz = 1 * 1000 * 1000; module_param(dout_max_speed_hz, uint, S_IRUGO); MODULE_PARM_DESC( dout_max_speed_hz, "Maximum clock rate to be used with this device (default: 1 MHz)" ); static struct spi_device *spi_din_dev; static unsigned int din_max_speed_hz = 1 * 1000 * 1000; module_param(din_max_speed_hz, uint, S_IRUGO); MODULE_PARM_DESC( din_max_speed_hz, "Maximum clock rate to be used with this device (default: 1 MHz)" ); static struct spi_device *spi_board_temp_dev; static unsigned int board_temp_max_speed_hz = 1 * 1000 * 1000; module_param(board_temp_max_speed_hz, uint, S_IRUGO); MODULE_PARM_DESC( board_temp_max_speed_hz, "Maximum clock rate to be used with this device (default: 1 MHz)" ); static inline int spi_writen(struct spi_device *spi, const u8 *buf, size_t len) { int tmp; u8 *tx; tx = kmalloc(len, GFP_KERNEL); if (!tx) { return -ENOMEM; } memcpy(tx, buf, len); tmp = spi_write(spi, tx, len); kfree(tx); return tmp; } static inline int spi_readn(struct spi_device *spi, u8 *buf, size_t len) { int tmp; u8 *rx; rx = kmalloc(len, GFP_KERNEL); if (!rx) { return -ENOMEM; } tmp = spi_read(spi, rx, len); memcpy(buf, rx, len); kfree(rx); return tmp; } #define ADC_SHTIME_DEFAULT 0x05 #define ADC_STARTUP_DEFAULT 0x04 #define ADC_PRESCALE_DEFAULT 0x3F #define ADC_MODE_DEFAULT \ ((ADC_SHTIME_DEFAULT & 0x0F) << 24) | \ ((ADC_STARTUP_DEFAULT & 0x1F) << 16) | \ ((ADC_PRESCALE_DEFAULT & 0x3F) << 8) #define ADC_CR_OFFSET 0x00 #define ADC_MR_OFFSET 0x04 #define ADC_CHER_OFFSET 0x10 #define ADC_CHDR_OFFSET 0x14 #define ADC_CHSR_OFFSET 0x18 #define ADC_SR_OFFSET 0x1C #define ADC_LDCR_OFFSET 0x20 #define ADC_IER_OFFSET 0x14 #define ADC_IDR_OFFSET 0x28 #define ADC_IMR_OFFSET 0x2C #define ADC_CDR0_OFFSET 0x30 #define ADC_CDR1_OFFSET 0x34 #define ADC_CDR2_OFFSET 0x38 #define ADC_CDR3_OFFSET 0x3C void __iomem *adc_base; struct clk *adc_clk; #define ADC_CONVERT_RESET(base) writel(0x01, (base) + ADC_CR_OFFSET) #define ADC_CONVERT_START(base) writel(0x02, (base) + ADC_CR_OFFSET) #define BLINK_PER_SEC 8 #define BLINK_INTERVAL (HZ / BLINK_PER_SEC) #define RESET_HOLD_COUNT (BLINK_PER_SEC * 3) static pid_t reset_pid = -1; static pid_t reset_count = 0; static int reset_short_signal = SIGUSR1; static int reset_long_signal = SIGUSR2; static DEFINE_MUTEX(mts_io_mutex); static void blink_callback(struct work_struct *ignored); static DECLARE_DELAYED_WORK(blink_work, blink_callback); static void blink_callback(struct work_struct *ignored) { struct gpio_pin *pin; int reset_pressed = 0; struct pid *vpid = NULL; mutex_lock(&mts_io_mutex); pin = gpio_pin_by_name("DEVICE_RESET"); if (pin) { reset_pressed = !at91_get_gpio_value(pin->pin); } if (reset_pid > 0) { vpid = find_vpid(reset_pid); } if (vpid) { if (reset_pressed) { reset_count++; } else if (reset_count > 0 && reset_count < RESET_HOLD_COUNT) { kill_pid(vpid, reset_short_signal, 1); reset_count = 0; } if (reset_count >= RESET_HOLD_COUNT) { reset_count = 0; kill_pid(vpid, reset_long_signal, 1); } } else { reset_count = 0; } #if LED_STATUS_CONTROLLABLE if (led_mode_status == LED_FLASHING) { pin = gpio_pin_by_name("STATUS_LED"); if (pin) { at91_set_gpio_value(pin->pin, !at91_get_gpio_value(pin->pin)); } } #endif mutex_unlock(&mts_io_mutex); schedule_delayed_work(&blink_work, BLINK_INTERVAL); } static int radio_reset(void) { int ret; struct gpio_pin *pin = gpio_pin_by_name("RADIO_RESET"); if (!pin) { return -ENODEV; } ret = at91_set_gpio_value(pin->pin, 0); if (ret) { return ret; } mdelay(250); ret = at91_set_gpio_value(pin->pin, 1); return ret; } static int ADT7302_to_celsius(int value) { if (value & 0x2000) { value = value - 16384; } value = value / 32 + 1 * ((value % 32) >= 16); return value; } #define MTS_ATTR_MODE_RW S_IWUSR | S_IRUGO #define MTS_ATTR_MODE_RO S_IRUGO #define MTS_ATTR_NAME(name) mts_attr_##name #define MTS_ATTR_SHOW(name) mts_attr_show_##name #define MTS_ATTR_STORE(name) mts_attr_store_##name #define MTS_ATTR(name, attr_name, attr_mode, show, store) \ static struct device_attribute MTS_ATTR_NAME(name) = \ .attr = { \ .name = attr_name, \ .mode = attr_mode, \ }, \ .show = show, \ .store = store, \ } static ssize_t mts_attr_show_radio_reset(struct device *dev, struct device_attribute *attr, char *buf) { int value; struct gpio_pin *pin = gpio_pin_by_name("RADIO_RESET"); if (!pin) { return -ENODEV; } mutex_lock(&mts_io_mutex); value = at91_get_gpio_value(pin->pin); mutex_unlock(&mts_io_mutex); if (value < 0) { return value; } return sprintf(buf, "%d\n", value); } static ssize_t mts_attr_store_radio_reset(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int value; int err; if (sscanf(buf, "%i", &value) != 1) { return -EINVAL; } if (value != 0) { return -EINVAL; } mutex_lock(&mts_io_mutex); err = radio_reset(); mutex_unlock(&mts_io_mutex); if (err) { return err; } return count; } static struct device_attribute dev_attr_radio_reset = { .attr = { .name = "radio-reset", .mode = MTS_ATTR_MODE_RW, }, .show = mts_attr_show_radio_reset, .store = mts_attr_store_radio_reset, }; static ssize_t mts_attr_show_eth0_enabled(struct device *dev, struct device_attribute *attr, char *buf) { int value; struct gpio_pin *pin = gpio_pin_by_name("ETH0_ENABLED"); if (!pin) { return -ENODEV; } mutex_lock(&mts_io_mutex); value = at91_get_gpio_value(pin->pin); mutex_unlock(&mts_io_mutex); if (value < 0) { return value; } return sprintf(buf, "%d\n", value); } static ssize_t mts_attr_store_eth0_enabled(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int value; int err; struct gpio_pin *pin = gpio_pin_by_name("ETH0_ENABLED"); if (!pin) { return -ENODEV; } if (sscanf(buf, "%i", &value) != 1) { return -EINVAL; } mutex_lock(&mts_io_mutex); err = at91_set_gpio_value(pin->pin, value); mutex_unlock(&mts_io_mutex); if (err) { return err; } return count; } static struct device_attribute dev_attr_eth0_enabled = { .attr = { .name = "eth0-enabled", .mode = MTS_ATTR_MODE_RW, }, .show = mts_attr_show_eth0_enabled, .store = mts_attr_store_eth0_enabled, }; static ssize_t mts_attr_store_sout(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int value; u8 bit; if (!spi_sout_dev) { log_notice("sout device not present"); return -ENODEV; } if (!strcmp(attr->attr.name, "extserial-ri")) { bit = SOUT_EXTSERIAL_RI_BIT; } else if (!strcmp(attr->attr.name, "extserial-dsr")) { bit = SOUT_EXTSERIAL_DSR_BIT; } else if (!strcmp(attr->attr.name, "extserial-dcd")) { bit = SOUT_EXTSERIAL_DCD_BIT; } else if (!strcmp(attr->attr.name, "led-cd") || !strcmp(attr->attr.name, "led-sdk-b")) { bit = SOUT_LED_CD_BIT; } else if (!strcmp(attr->attr.name, "led-dtr") || !strcmp(attr->attr.name, "led-sdk-f")) { bit = SOUT_LED_DTR; } else if (!strcmp(attr->attr.name, "led-sig1") || !strcmp(attr->attr.name, "led-sdk-c")) { bit = SOUT_LED_SIG1_BIT; } else if (!strcmp(attr->attr.name, "led-sig2") || !strcmp(attr->attr.name, "led-sdk-d")) { bit = SOUT_LED_SIG2_BIT; } else if (!strcmp(attr->attr.name, "led-sig3") || !strcmp(attr->attr.name, "led-sdk-e")) { bit = SOUT_LED_SIG3_BIT; } else { log_notice("sout attr does not exists"); return -ENOENT; } if (sscanf(buf, "%i", &value) != 1) { log_notice("sout attr invalid argument"); return -EINVAL; } mutex_lock(&spi_sout_mutex); if (value) { spi_sout_value &= ~bit; } else { spi_sout_value |= bit; } spi_writen(spi_sout_dev, &spi_sout_value, 1); mutex_unlock(&spi_sout_mutex); return count; } static ssize_t mts_attr_show_sout(struct device *dev, struct device_attribute *attr, char *buf) { int value; u8 bit; if (!spi_sout_dev) { log_error("sout device not present"); return -ENODEV; } if (!strcmp(attr->attr.name, "extserial-ri")) { bit = SOUT_EXTSERIAL_RI_BIT; } else if (!strcmp(attr->attr.name, "extserial-dsr")) { bit = SOUT_EXTSERIAL_DSR_BIT; } else if (!strcmp(attr->attr.name, "extserial-dcd")) { bit = SOUT_EXTSERIAL_DCD_BIT; } else if (!strcmp(attr->attr.name, "led-cd") || !strcmp(attr->attr.name, "led-sdk-b")) { bit = SOUT_LED_CD_BIT; } else if (!strcmp(attr->attr.name, "led-dtr") || !strcmp(attr->attr.name, "led-sdk-f")) { bit = SOUT_LED_DTR; } else if (!strcmp(attr->attr.name, "led-sig1") || !strcmp(attr->attr.name, "led-sdk-c")) { bit = SOUT_LED_SIG1_BIT; } else if (!strcmp(attr->attr.name, "led-sig2") || !strcmp(attr->attr.name, "led-sdk-d")) { bit = SOUT_LED_SIG2_BIT; } else if (!strcmp(attr->attr.name, "led-sig3") || !strcmp(attr->attr.name, "led-sdk-e")) { bit = SOUT_LED_SIG3_BIT; } else { log_notice("sout attr does not exists"); return -ENOENT; } mutex_lock(&spi_sout_mutex); value = spi_sout_value & bit ? 0 : 1; mutex_unlock(&spi_sout_mutex); return sprintf(buf, "%d\n", value); } static struct device_attribute dev_attr_extserial_dcd = { .attr = { .name = "extserial-dcd", .mode = MTS_ATTR_MODE_RW, }, .show = mts_attr_show_sout, .store = mts_attr_store_sout, }; static struct device_attribute dev_attr_extserial_ri = { .attr = { .name = "extserial-ri", .mode = MTS_ATTR_MODE_RW, }, .show = mts_attr_show_sout, .store = mts_attr_store_sout, }; static struct device_attribute dev_attr_extserial_dsr = { .attr = { .name = "extserial-dsr", .mode = MTS_ATTR_MODE_RW, }, .show = mts_attr_show_sout, .store = mts_attr_store_sout, }; static struct device_attribute dev_attr_led_cd = { .attr = { .name = "led-cd", .mode = MTS_ATTR_MODE_RW, }, .show = mts_attr_show_sout, .store = mts_attr_store_sout, }; static struct device_attribute dev_attr_led_sdk_b = { .attr = { .name = "led-sdk-b", .mode = MTS_ATTR_MODE_RW, }, .show = mts_attr_show_sout, .store = mts_attr_store_sout, }; static struct device_attribute dev_attr_led_sig1 = { .attr = { .name = "led-sig1", .mode = MTS_ATTR_MODE_RW, }, .show = mts_attr_show_sout, .store = mts_attr_store_sout, }; static struct device_attribute dev_attr_led_sdk_c = { .attr = { .name = "led-sdk-c", .mode = MTS_ATTR_MODE_RW, }, .show = mts_attr_show_sout, .store = mts_attr_store_sout, }; static struct device_attribute dev_attr_led_sig2 = { .attr = { .name = "led-sig2", .mode = MTS_ATTR_MODE_RW, }, .show = mts_attr_show_sout, .store = mts_attr_store_sout, }; static struct device_attribute dev_attr_led_sdk_d = { .attr = { .name = "led-sdk-d", .mode = MTS_ATTR_MODE_RW, }, .show = mts_attr_show_sout, .store = mts_attr_store_sout, }; static struct device_attribute dev_attr_led_sig3 = { .attr = { .name = "led-sig3", .mode = MTS_ATTR_MODE_RW, }, .show = mts_attr_show_sout, .store = mts_attr_store_sout, }; static struct device_attribute dev_attr_led_sdk_e = { .attr = { .name = "led-sdk-e", .mode = MTS_ATTR_MODE_RW, }, .show = mts_attr_show_sout, .store = mts_attr_store_sout, }; static struct device_attribute dev_attr_led_dtr = { .attr = { .name = "led-dtr", .mode = MTS_ATTR_MODE_RW, }, .show = mts_attr_show_sout, .store = mts_attr_store_sout, }; static struct device_attribute dev_attr_led_sdk_f = { .attr = { .name = "led-sdk-f", .mode = MTS_ATTR_MODE_RW, }, .show = mts_attr_show_sout, .store = mts_attr_store_sout, }; static ssize_t mts_attr_store_dout(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int value; u8 bit; if (!spi_dout_dev) { log_notice("dout device not present"); return -ENODEV; } if (!strcmp(attr->attr.name, "dout0")) { bit = BIT(0); } else if (!strcmp(attr->attr.name, "dout1")) { bit = BIT(1); } else if (!strcmp(attr->attr.name, "dout2")) { bit = BIT(2); } else if (!strcmp(attr->attr.name, "dout3")) { bit = BIT(3); } else if (!strcmp(attr->attr.name, "dout4")) { bit = BIT(4); } else if (!strcmp(attr->attr.name, "dout5")) { bit = BIT(5); } else if (!strcmp(attr->attr.name, "dout6")) { bit = BIT(6); } else if (!strcmp(attr->attr.name, "dout7")) { bit = BIT(7); } else { log_notice("dout attr does not exists"); return -ENOENT; } if (sscanf(buf, "%i", &value) != 1) { log_notice("dout attr invalid argument"); return -EINVAL; } mutex_lock(&spi_dout_mutex); if (value) { spi_dout_value &= ~bit; } else { spi_dout_value |= bit; } spi_writen(spi_dout_dev, &spi_dout_value, 1); mutex_unlock(&spi_dout_mutex); return count; } static ssize_t mts_attr_show_dout(struct device *dev, struct device_attribute *attr, char *buf) { int value; u8 bit; if (!spi_dout_dev) { log_error("dout device not present"); return -ENODEV; } if (!strcmp(attr->attr.name, "dout0")) { bit = BIT(0); } else if (!strcmp(attr->attr.name, "dout1")) { bit = BIT(1); } else if (!strcmp(attr->attr.name, "dout2")) { bit = BIT(2); } else if (!strcmp(attr->attr.name, "dout3")) { bit = BIT(3); } else if (!strcmp(attr->attr.name, "dout4")) { bit = BIT(4); } else if (!strcmp(attr->attr.name, "dout5")) { bit = BIT(5); } else if (!strcmp(attr->attr.name, "dout6")) { bit = BIT(6); } else if (!strcmp(attr->attr.name, "dout7")) { bit = BIT(7); } else { log_notice("dout attr does not exists"); return -ENOENT; } mutex_lock(&spi_dout_mutex); value = spi_dout_value & bit ? 1 : 0; mutex_unlock(&spi_dout_mutex); return sprintf(buf, "%d\n", value); } static struct device_attribute dev_attr_dout0 = { .attr = { .name = "dout0", .mode = MTS_ATTR_MODE_RW, }, .show = mts_attr_show_dout, .store = mts_attr_store_dout, }; static struct device_attribute dev_attr_dout1 = { .attr = { .name = "dout1", .mode = MTS_ATTR_MODE_RW, }, .show = mts_attr_show_dout, .store = mts_attr_store_dout, }; static struct device_attribute dev_attr_dout2 = { .attr = { .name = "dout2", .mode = MTS_ATTR_MODE_RW, }, .show = mts_attr_show_dout, .store = mts_attr_store_dout, }; static struct device_attribute dev_attr_dout3 = { .attr = { .name = "dout3", .mode = MTS_ATTR_MODE_RW, }, .show = mts_attr_show_dout, .store = mts_attr_store_dout, }; static struct device_attribute dev_attr_dout4 = { .attr = { .name = "dout4", .mode = MTS_ATTR_MODE_RW, }, .show = mts_attr_show_dout, .store = mts_attr_store_dout, }; static struct device_attribute dev_attr_dout5 = { .attr = { .name = "dout5", .mode = MTS_ATTR_MODE_RW, }, .show = mts_attr_show_dout, .store = mts_attr_store_dout, }; static struct device_attribute dev_attr_dout6 = { .attr = { .name = "dout6", .mode = MTS_ATTR_MODE_RW, }, .show = mts_attr_show_dout, .store = mts_attr_store_dout, }; static struct device_attribute dev_attr_dout7 = { .attr = { .name = "dout7", .mode = MTS_ATTR_MODE_RW, }, .show = mts_attr_show_dout, .store = mts_attr_store_dout, }; static ssize_t mts_attr_show_din(struct device *dev, struct device_attribute *attr, char *buf) { int tmp; u8 bit; u8 byte; if (!spi_din_dev) { log_error("din device not present"); return -ENODEV; } if (!strcmp(attr->attr.name, "din0")) { bit = BIT(0); } else if (!strcmp(attr->attr.name, "din1")) { bit = BIT(1); } else if (!strcmp(attr->attr.name, "din2")) { bit = BIT(2); } else if (!strcmp(attr->attr.name, "din3")) { bit = BIT(3); } else if (!strcmp(attr->attr.name, "din4")) { bit = BIT(4); } else if (!strcmp(attr->attr.name, "din5")) { bit = BIT(5); } else if (!strcmp(attr->attr.name, "din6")) { bit = BIT(6); } else if (!strcmp(attr->attr.name, "din7")) { bit = BIT(7); } else { log_notice("din attr does not exists"); return -ENOENT; } tmp = spi_readn(spi_din_dev, &byte, 1); if (tmp) { log_error("spi_read failed %d", tmp); return tmp; } tmp = byte & bit ? 1 : 0; return sprintf(buf, "%d\n", tmp); } static struct device_attribute dev_attr_din0 = { .attr = { .name = "din0", .mode = MTS_ATTR_MODE_RO, }, .show = mts_attr_show_din, }; static struct device_attribute dev_attr_din1 = { .attr = { .name = "din1", .mode = MTS_ATTR_MODE_RO, }, .show = mts_attr_show_din, }; static struct device_attribute dev_attr_din2 = { .attr = { .name = "din2", .mode = MTS_ATTR_MODE_RO, }, .show = mts_attr_show_din, }; static struct device_attribute dev_attr_din3 = { .attr = { .name = "din3", .mode = MTS_ATTR_MODE_RO, }, .show = mts_attr_show_din, }; static struct device_attribute dev_attr_din4 = { .attr = { .name = "din4", .mode = MTS_ATTR_MODE_RO, }, .show = mts_attr_show_din, }; static struct device_attribute dev_attr_din5 = { .attr = { .name = "din5", .mode = MTS_ATTR_MODE_RO, }, .show = mts_attr_show_din, }; static struct device_attribute dev_attr_din6 = { .attr = { .name = "din6", .mode = MTS_ATTR_MODE_RO, }, .show = mts_attr_show_din, }; static struct device_attribute dev_attr_din7 = { .attr = { .name = "din7", .mode = MTS_ATTR_MODE_RO, }, .show = mts_attr_show_din, }; static ssize_t mts_attr_show_extserial_dtr(struct device *dev, struct device_attribute *attr, char *buf) { int value; struct gpio_pin *pin = gpio_pin_by_name("DTR1"); if (!pin) { return -ENODEV; } mutex_lock(&mts_io_mutex); value = !at91_get_gpio_value(pin->pin); mutex_unlock(&mts_io_mutex); if (value < 0) { return value; } return sprintf(buf, "%d\n", value); } static struct device_attribute dev_attr_extserial_dtr = { .attr = { .name = "extserial-dtr", .mode = MTS_ATTR_MODE_RO, }, .show = mts_attr_show_extserial_dtr, }; #if LED_STATUS_CONTROLLABLE static ssize_t mts_attr_show_led_status(struct device *dev, struct device_attribute *attr, char *buf) { return sprintf(buf, "%d\n", led_mode_status); } static ssize_t mts_attr_store_led_status(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int value; int ret; struct gpio_pin *pin = gpio_pin_by_name("STATUS_LED"); if (!pin) { return -ENODEV; } if (sscanf(buf, "%i", &value) != 1) { return -EINVAL; } mutex_lock(&mts_io_mutex); switch (value) { case LED_OFF: led_mode_status = LED_OFF; ret = at91_set_gpio_value(pin->pin, 1); break; case LED_ON: led_mode_status = LED_ON; ret = at91_set_gpio_value(pin->pin, 0); break; case LED_FLASHING: led_mode_status = LED_FLASHING; ret = at91_set_gpio_value(pin->pin, 0); break; default: ret = -EINVAL; } mutex_unlock(&mts_io_mutex); return count; } static struct device_attribute dev_attr_led_status = { .attr = { .name = "led-status", .mode = MTS_ATTR_MODE_RW, }, .show = mts_attr_show_led_status, .store = mts_attr_store_led_status, }; static struct device_attribute dev_attr_led_sdk_a = { .attr = { .name = "led-sdk-a", .mode = MTS_ATTR_MODE_RW, }, .show = mts_attr_show_led_status, .store = mts_attr_store_led_status, }; #endif static ssize_t mts_attr_show_led_ls(struct device *dev, struct device_attribute *attr, char *buf) { int value; struct gpio_pin *pin = gpio_pin_by_name("LS_LED"); if (!pin) { return -ENODEV; } mutex_lock(&mts_io_mutex); value = at91_get_gpio_value(pin->pin); mutex_unlock(&mts_io_mutex); if (value < 0) { return value; } return sprintf(buf, "%d\n", !value); } static ssize_t mts_attr_store_led_ls(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int value; int err; struct gpio_pin *pin = gpio_pin_by_name("LS_LED"); if (!pin) { return -ENODEV; } if (sscanf(buf, "%i", &value) != 1) { return -EINVAL; } mutex_lock(&mts_io_mutex); err = at91_set_gpio_value(pin->pin, !value); mutex_unlock(&mts_io_mutex); if (err) { return err; } return count; } static struct device_attribute dev_attr_led_ls = { .attr = { .name = "led-ls", #if LED_LS_CONTROLLABLE .mode = MTS_ATTR_MODE_RW, #else .mode = MTS_ATTR_MODE_RO, #endif }, .show = mts_attr_show_led_ls, .store = mts_attr_store_led_ls, }; static ssize_t mts_attr_show_reset(struct device *dev, struct device_attribute *attr, char *buf) { int value; struct gpio_pin *pin = gpio_pin_by_name("DEVICE_RESET"); if (!pin) { return -ENODEV; } mutex_lock(&mts_io_mutex); value = !at91_get_gpio_value(pin->pin); mutex_unlock(&mts_io_mutex); if (value < 0) { return value; } return sprintf(buf, "%d\n", value); } static struct device_attribute dev_attr_reset = { .attr = { .name = "reset", .mode = MTS_ATTR_MODE_RO, }, .show = mts_attr_show_reset, }; static ssize_t mts_attr_show_reset_monitor(struct device *dev, struct device_attribute *attr, char *buf) { int ret; mutex_lock(&mts_io_mutex); ret = sprintf(buf, "%d %d %d\n", reset_pid, reset_short_signal, reset_long_signal); mutex_unlock(&mts_io_mutex); return ret; } static ssize_t mts_attr_store_reset_monitor(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { pid_t pid; int short_signal; int long_signal; if (sscanf(buf, "%i %i %i", &pid, &short_signal, &long_signal) != 3) { return -EINVAL; } mutex_lock(&mts_io_mutex); reset_pid = pid; reset_short_signal = short_signal; reset_long_signal = long_signal; mutex_unlock(&mts_io_mutex); return count; } static struct device_attribute dev_attr_reset_monitor = { .attr = { .name = "reset-monitor", .mode = MTS_ATTR_MODE_RW, }, .show = mts_attr_show_reset_monitor, .store = mts_attr_store_reset_monitor, }; static ssize_t mts_attr_show_board_temperature(struct device *dev, struct device_attribute *attr, char *buf) { int tmp; u16 temp_raw; if (!spi_board_temp_dev) { log_notice("spi_board_temp device not present"); return -ENODEV; } tmp = spi_readn(spi_board_temp_dev, (u8 *) buf, 2); if (tmp) { log_error("spi_readn failed %d", tmp); return tmp; } temp_raw = ((u8 *) buf)[0] << 8 | ((u8 *) buf)[1]; log_debug("temp: 0x%04X", temp_raw); return sprintf(buf, "%d\n", ADT7302_to_celsius(temp_raw)); } static struct device_attribute dev_attr_board_temperature = { .attr = { .name = "board-temperature", .mode = MTS_ATTR_MODE_RO, }, .show = mts_attr_show_board_temperature, }; static ssize_t mts_attr_show_adc(struct device *dev, struct device_attribute *attr, char *buf) { int offset; u32 value; if (!DEVICE_CAPA(id_eeprom.capa, CAPA_ADC)) { log_debug("ADC not available"); return -ENODEV; } if (!strcmp(attr->attr.name, "adc0")) { offset = ADC_CDR0_OFFSET; } else if (!strcmp(attr->attr.name, "adc1")) { offset = ADC_CDR1_OFFSET; } else if (!strcmp(attr->attr.name, "adc2")) { offset = ADC_CDR2_OFFSET; } else if (!strcmp(attr->attr.name, "adc3")) { offset = ADC_CDR3_OFFSET; } else { log_notice("adc attr does not exists"); return -ENOENT; } ADC_CONVERT_START(adc_base); value = 0; while (value != 0x0F) { value = readl(adc_base + ADC_SR_OFFSET) & 0x0F; } return sprintf(buf, "%lu\n", (unsigned long) readl(adc_base + offset)); } static struct device_attribute dev_attr_adc0 = { .attr = { .name = "adc0", .mode = MTS_ATTR_MODE_RO, }, .show = mts_attr_show_adc, }; static struct device_attribute dev_attr_adc1 = { .attr = { .name = "adc1", .mode = MTS_ATTR_MODE_RO, }, .show = mts_attr_show_adc, }; static struct device_attribute dev_attr_adc2 = { .attr = { .name = "adc2", .mode = MTS_ATTR_MODE_RO, }, .show = mts_attr_show_adc, }; static struct device_attribute dev_attr_adc3 = { .attr = { .name = "adc3", .mode = MTS_ATTR_MODE_RO, }, .show = mts_attr_show_adc, }; static ssize_t mts_attr_show_usbh2_ps_oc(struct device *dev, struct device_attribute *attr, char *buf) { int value; struct gpio_pin *pin = gpio_pin_by_name("USBH2_PS_OC"); if (!pin) { return -ENODEV; } mutex_lock(&mts_io_mutex); value = at91_get_gpio_value(pin->pin); mutex_unlock(&mts_io_mutex); if (value < 0) { return value; } return sprintf(buf, "%d\n", !value); } static struct device_attribute dev_attr_usbh2_ps_oc = { .attr = { .name = "usbh2-ps-oc", .mode = MTS_ATTR_MODE_RO, }, .show = mts_attr_show_usbh2_ps_oc, }; #if USBH2_PS_CONTROLLABLE static ssize_t mts_attr_show_usbh2_ps_enabled(struct device *dev, struct device_attribute *attr, char *buf) { int value; struct gpio_pin *pin = gpio_pin_by_name("USBH2_PS_ENABLED"); if (!pin) { return -ENODEV; } mutex_lock(&mts_io_mutex); value = at91_get_gpio_value(pin->pin); mutex_unlock(&mts_io_mutex); if (value < 0) { return value; } return sprintf(buf, "%d\n", !value); } static ssize_t mts_attr_store_usbh2_ps_enabled(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int value; int err; struct gpio_pin *pin = gpio_pin_by_name("USBH2_PS_ENABLED"); if (!pin) { return -ENODEV; } if (sscanf(buf, "%i", &value) != 1) { return -EINVAL; } mutex_lock(&mts_io_mutex); err = at91_set_gpio_value(pin->pin, !value); mutex_unlock(&mts_io_mutex); if (err) { return err; } return count; } static struct device_attribute dev_attr_usbh2_ps_enabled = { .attr = { .name = "usbh2-ps-enabled", .mode = MTS_ATTR_MODE_RW, }, .show = mts_attr_show_usbh2_ps_enabled, .store = mts_attr_store_usbh2_ps_enabled, }; #endif static struct attribute *platform_attributes[] = { &dev_attr_reset.attr, &dev_attr_reset_monitor.attr, &dev_attr_radio_reset.attr, &dev_attr_eth0_enabled.attr, &dev_attr_extserial_dtr.attr, &dev_attr_led_ls.attr, #if LED_STATUS_CONTROLLABLE &dev_attr_led_status.attr, &dev_attr_led_sdk_a.attr, #endif &dev_attr_usbh2_ps_oc.attr, #if USBH2_PS_CONTROLLABLE &dev_attr_usbh2_ps_enabled.attr, #endif &dev_attr_extserial_dcd.attr, &dev_attr_extserial_ri.attr, &dev_attr_extserial_dsr.attr, &dev_attr_led_cd.attr, &dev_attr_led_sdk_b.attr, &dev_attr_led_sig1.attr, &dev_attr_led_sdk_c.attr, &dev_attr_led_sig2.attr, &dev_attr_led_sdk_d.attr, &dev_attr_led_sig3.attr, &dev_attr_led_sdk_e.attr, &dev_attr_led_dtr.attr, &dev_attr_led_sdk_f.attr, &dev_attr_dout0.attr, &dev_attr_dout1.attr, &dev_attr_dout2.attr, &dev_attr_dout3.attr, &dev_attr_dout4.attr, &dev_attr_dout5.attr, &dev_attr_dout6.attr, &dev_attr_dout7.attr, &dev_attr_din0.attr, &dev_attr_din1.attr, &dev_attr_din2.attr, &dev_attr_din3.attr, &dev_attr_din4.attr, &dev_attr_din5.attr, &dev_attr_din6.attr, &dev_attr_din7.attr, &dev_attr_board_temperature.attr, &dev_attr_adc0.attr, &dev_attr_adc1.attr, &dev_attr_adc2.attr, &dev_attr_adc3.attr, NULL, }; static struct attribute_group platform_attribute_group = { .attrs = platform_attributes }; static struct platform_device *mts_io_platform_device; static int __devinit mts_spi_sout_probe(struct spi_device *spi) { int tmp; spi->max_speed_hz = sout_max_speed_hz; spi->mode = 0; log_debug("sout_max_speed_hz: %d", sout_max_speed_hz); tmp = spi_setup(spi); if (tmp < 0) { log_error("spi_setup sout failed"); return tmp; } spi_sout_value = 0xFF; spi_writen(spi, &spi_sout_value, 1); spi_sout_dev = spi; return 0; } static int mts_spi_sout_remove(struct spi_device *spi) { spi_sout_dev = NULL; return 0; } static struct spi_driver mts_spi_sout_driver = { .driver = { .name = "mts-io-sout", .bus = &spi_bus_type, .owner = THIS_MODULE, }, .probe = mts_spi_sout_probe, .remove = __devexit_p(mts_spi_sout_remove), }; static int __devinit mts_spi_dout_probe(struct spi_device *spi) { int tmp; if (!DEVICE_CAPA(id_eeprom.capa, CAPA_DOUT)) { log_debug("digital outputs not available"); return -ENODEV; } spi->max_speed_hz = dout_max_speed_hz; spi->mode = 0; log_debug("dout_max_speed_hz: %d", dout_max_speed_hz); tmp = spi_setup(spi); if (tmp < 0) { log_error("spi_setup dout failed"); return tmp; } spi_dout_value = 0x00; spi_writen(spi, &spi_dout_value, 1); spi_dout_dev = spi; return 0; } static int mts_spi_dout_remove(struct spi_device *spi) { spi_dout_dev = NULL; return 0; } static struct spi_driver mts_spi_dout_driver = { .driver = { .name = "mts-io-dout", .bus = &spi_bus_type, .owner = THIS_MODULE, }, .probe = mts_spi_dout_probe, .remove = __devexit_p(mts_spi_dout_remove), }; static int __devinit mts_spi_din_probe(struct spi_device *spi) { int tmp; if (!DEVICE_CAPA(id_eeprom.capa, CAPA_DIN)) { log_debug("digital inputs not available"); return -ENODEV; } spi->max_speed_hz = din_max_speed_hz; spi->mode = SPI_CPOL; log_debug("din_max_speed_hz: %d", din_max_speed_hz); tmp = spi_setup(spi); if (tmp < 0) { log_error("spi_setup din failed"); return tmp; } spi_din_dev = spi; return 0; } static int mts_spi_din_remove(struct spi_device *spi) { spi_din_dev = NULL; return 0; } static struct spi_driver mts_spi_din_driver = { .driver = { .name = "mts-io-din", .bus = &spi_bus_type, .owner = THIS_MODULE, }, .probe = mts_spi_din_probe, .remove = __devexit_p(mts_spi_din_remove), }; static int __devinit mts_spi_board_temp_probe(struct spi_device *spi) { int tmp; spi->max_speed_hz = board_temp_max_speed_hz; spi->mode = SPI_CPOL | SPI_CPHA; log_debug("board_temp_max_speed_hz: %d", board_temp_max_speed_hz); tmp = spi_setup(spi); if (tmp < 0) { log_error("spi_setup board-temp failed"); return tmp; } spi_board_temp_dev = spi; return 0; } static int mts_spi_board_temp_remove(struct spi_device *spi) { spi_board_temp_dev = NULL; return 0; } static struct spi_driver mts_spi_board_temp_driver = { .driver = { .name = "mts-io-board-temp", .bus = &spi_bus_type, .owner = THIS_MODULE, }, .probe = mts_spi_board_temp_probe, .remove = __devexit_p(mts_spi_board_temp_remove), }; static int __init mts_io_init(void) { struct gpio_pin *pin; int ret; log_info("init: " DRIVER_VERSION); ret = mts_id_eeprom_load(); if (ret) { goto error1; } mts_io_platform_device = platform_device_alloc(PLATFORM_NAME, -1); if (!mts_io_platform_device) { ret = -ENOMEM; goto error1; } ret = platform_device_add(mts_io_platform_device); if (ret) { goto error2; } ret = sysfs_create_group(&mts_io_platform_device->dev.kobj, &platform_attribute_group); if (ret) { goto error3; } ret = spi_register_driver(&mts_spi_sout_driver); if (ret) { goto error4; } ret = spi_register_driver(&mts_spi_board_temp_driver); if (ret) { goto error7; } ret = spi_register_driver(&mts_spi_dout_driver); if (ret) { goto error5; } ret = spi_register_driver(&mts_spi_din_driver); if (ret) { goto error6; } adc_base = ioremap(AT91SAM9260_BASE_ADC, SZ_16K); if (!adc_base) { goto error8; } adc_clk = clk_get(NULL, "adc_clk"); if (!adc_clk) { goto error9; } clk_enable(adc_clk); ADC_CONVERT_RESET(adc_base); writel(ADC_MODE_DEFAULT, adc_base + ADC_MR_OFFSET); writel(0x000F0F0F, adc_base + ADC_IDR_OFFSET); if (DEVICE_CAPA(id_eeprom.capa, CAPA_ADC)) { writel(0x0F, adc_base + ADC_CHER_OFFSET); } else { writel(0x0F, adc_base + ADC_CHDR_OFFSET); } for (pin = gpio_pins; *pin->name; pin++) { gpio_request(pin->pin, pin->name); if (pin->direction == GPIO_DIR_OUTPUT) { at91_set_gpio_output(pin->pin, pin->output_value); } else { at91_set_gpio_input(pin->pin, pin->use_pullup); } } pin = gpio_pin_by_name("ENIO"); if (pin) { at91_set_gpio_value(pin->pin, 0); } blink_callback(NULL); return 0; error9: iounmap(adc_base); error8: spi_unregister_driver(&mts_spi_board_temp_driver); error7: spi_unregister_driver(&mts_spi_din_driver); error6: spi_unregister_driver(&mts_spi_dout_driver); error5: spi_unregister_driver(&mts_spi_sout_driver); error4: sysfs_remove_group(&mts_io_platform_device->dev.kobj, &platform_attribute_group); error3: platform_device_del(mts_io_platform_device); error2: platform_device_put(mts_io_platform_device); error1: log_error("init failed: %d", ret); return ret; } static void __exit mts_io_exit(void) { cancel_delayed_work_sync(&blink_work); iounmap(adc_base); clk_disable(adc_clk); clk_put(adc_clk); spi_unregister_driver(&mts_spi_din_driver); spi_unregister_driver(&mts_spi_dout_driver); spi_unregister_driver(&mts_spi_board_temp_driver); spi_unregister_driver(&mts_spi_sout_driver); sysfs_remove_group(&mts_io_platform_device->dev.kobj, &platform_attribute_group); platform_device_unregister(mts_io_platform_device); log_info("exiting"); } module_init(mts_io_init); module_exit(mts_io_exit); MODULE_AUTHOR(DRIVER_AUTHOR); MODULE_DESCRIPTION(DRIVER_DESC); MODULE_VERSION(DRIVER_VERSION); MODULE_LICENSE("GPL"); MODULE_ALIAS("mts-io-sout"); MODULE_ALIAS("mts-io-board-temp"); MODULE_ALIAS("mts-io-dout"); MODULE_ALIAS("mts-io-din");