struct spi_device *gpiob_spi[NUM_AP][3]; struct spi_driver gpiob_spi_drivers[NUM_AP][3]; static u8 spi_ap_dout_value; static DEFINE_MUTEX(spi_ap_dout_mutex); static unsigned int ap_dout_max_speed_hz = 1 * 1000 * 1000; module_param(ap_dout_max_speed_hz, uint, S_IRUGO); MODULE_PARM_DESC( ap_dout_max_speed_hz, "Maximum clock rate to be used with this device (default: 1 MHz)" ); static unsigned int ap_din_max_speed_hz = 1 * 1000 * 1000; module_param(ap_din_max_speed_hz, uint, S_IRUGO); MODULE_PARM_DESC( ap_din_max_speed_hz, "Maximum clock rate to be used with this device (default: 1 MHz)" ); static unsigned int ap_adc_max_speed_hz = 20 * 1000 * 1000; module_param(ap_adc_max_speed_hz, uint, S_IRUGO); MODULE_PARM_DESC( ap_adc_max_speed_hz, "Maximum clock rate to be used with this device (default: 20 MHz)" ); static bool gpiob_get_dev_info_from_modalias(const char* modalias, int* port, char* buf) { sscanf(modalias, "mts-io-ap%d-%s", port, buf); return true; } static int mts_spi_ap_probe(struct spi_device *spi) { int tmp; int port; int port_index; char buf[16]; enum spi_devices dev; gpiob_get_dev_info_from_modalias(spi->modalias, &port, buf); port_index = port - 1; if (port < 1 || port > NUM_AP) { log_error("port [%d] is invalid", port); return -ENODEV; } if (strstr(buf, "dout")) { dev = dout; spi->max_speed_hz = ap_dout_max_speed_hz; spi->mode = 0; } else if (strstr(buf, "din")) { dev = din; spi->max_speed_hz = ap_din_max_speed_hz; spi->mode = SPI_CPOL; } else if (strstr(buf, "adc")) { dev = adc; spi->max_speed_hz = ap_adc_max_speed_hz; spi->mode = 0; } else { log_error("unknown gpiob spi device type [%s]", buf); return -ENODEV; } gpiob_spi[port_index][dev] = spi; tmp = spi_setup(gpiob_spi[port_index][dev]); if (tmp < 0) { log_error("spi_setup ap %d %s failed", port, buf); return tmp; } if (dev == dout) { spi_ap_dout_value = 0x00; spi_writen(gpiob_spi[port_index][dev], &spi_ap_dout_value, 1); } return 0; } static int mts_spi_ap_remove(struct spi_device *spi) { int port; int port_index; char buf[16]; gpiob_get_dev_info_from_modalias(spi->modalias, &port, buf); port_index = port - 1; if (port < 1 || port > NUM_AP) { log_error("port [%d] is invalid", port); return -ENODEV; } if (strstr(buf, "dout")) { gpiob_spi[port_index][dout] = NULL; } else if (strstr(buf, "din")) { gpiob_spi[port_index][din] = NULL; } else if (strstr(buf, "adc")) { gpiob_spi[port_index][adc] = NULL; } else { log_error("unknown gpiob spi device type [%s]", buf); return -ENODEV; } return 0; } // Is there a way to make this dynamic as well? struct gpio_pin *ap_gpio_pin_by_attr_name(const char *name) { struct gpio_pin *pin; char *pin_attr_name; if (!strcmp(name, "ap-led1:1")) { pin_attr_name = "ap1-gpio3"; } else if (!strcmp(name, "ap-led2:1")) { pin_attr_name = "ap1-gpio4"; } else if (!strcmp(name, "ap-dout-enable:1")) { pin_attr_name = "ap1-gpio1"; } else if (!strcmp(name, "ap-reset:1")) { pin_attr_name = "ap1-reset"; } else if (!strcmp(name, "ap-led1:2")) { pin_attr_name = "ap2-gpio3"; } else if (!strcmp(name, "ap-led2:2")) { pin_attr_name = "ap2-gpio4"; } else if (!strcmp(name, "ap-dout-enable:2")) { pin_attr_name = "ap2-gpio1"; } else if (!strcmp(name, "ap-reset:2")) { pin_attr_name = "ap2-reset"; } else { log_error("accessory card attribute %s not available", name); return NULL; } for (pin = gpio_pins; *pin->name; pin++) { if (!strcmp(pin->pin.label, pin_attr_name)) { return pin; } } log_error("pin with attr name %s not found", name); return NULL; } static ssize_t mts_attr_show_ap_gpio_pin(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { int value; struct gpio_pin *pin = ap_gpio_pin_by_attr_name(attr->attr.name); if (!pin) { return -ENODEV; } mutex_lock(&mts_io_mutex); value = gpio_get_value(pin->pin.gpio); mutex_unlock(&mts_io_mutex); if (value < 0) { return value; } if (pin->active_low) { value = !value; } return sprintf(buf, "%d\n", value); } static ssize_t mts_attr_store_ap_gpio_pin(struct kobject *kobj, struct kobj_attribute *attr, const char *buf, size_t count) { int value; struct gpio_pin *pin = ap_gpio_pin_by_attr_name(attr->attr.name); if (!pin) { return -ENODEV; } if (sscanf(buf, "%i", &value) != 1) { return -EINVAL; } if (pin->active_low) { value = !value; } mutex_lock(&mts_io_mutex); gpio_set_value(pin->pin.gpio, value); mutex_unlock(&mts_io_mutex); return count; } static ssize_t mts_attr_show_ap_din(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { int tmp; int channel; int port; int port_index; u8 bit; u8 byte; sscanf(attr->attr.name, "din%d:%d", &channel, &port); port_index = port - 1; if (channel < 0 || channel > 3) { log_error("channel [%d] is invalid", channel); return -ENOENT; } if (port < 1 || port > NUM_AP) { log_error("port [%d] is invalid", port); return -ENOENT; } bit = BIT(channel); tmp = spi_readn(gpiob_spi[port_index][din], &byte, 1); if (tmp) { log_error("spi_read failed %d", tmp); return tmp; } tmp = byte & bit ? 1 : 0; return sprintf(buf, "%d\n", tmp); } static ssize_t mts_attr_store_ap_dout(struct kobject *kobj, struct kobj_attribute *attr, const char *buf, size_t count) { int value; int channel; int port; int port_index; u8 bit; sscanf(attr->attr.name, "dout%d:%d", &channel, &port); port_index = port - 1; if (channel < 0 || channel > 3) { log_error("channel [%d] is invalid", channel); return -ENOENT; } if (port < 1 || port > NUM_AP) { log_error("port [%d] is invalid", port); return -ENOENT; } bit = BIT(channel); if (sscanf(buf, "%i", &value) != 1) { log_error("accessory card dout attr invalid argument [%d]", value); return -EINVAL; } mutex_lock(&spi_ap_dout_mutex); if (value) { spi_ap_dout_value &= ~bit; } else { spi_ap_dout_value |= bit; } spi_writen(gpiob_spi[port_index][dout], &spi_ap_dout_value, 1); mutex_unlock(&spi_ap_dout_mutex); return count; } static ssize_t mts_attr_show_ap_dout(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { int value; int channel; int port; u8 bit; sscanf(attr->attr.name, "dout%d:%d", &channel, &port); if (channel < 0 || channel > 3) { log_error("channel [%d] is invalid", channel); return -ENOENT; } if (port < 1 || port > NUM_AP) { log_error("port [%d] is invalid", port); return -ENOENT; } bit = BIT(channel); mutex_lock(&spi_ap_dout_mutex); value = spi_ap_dout_value & bit ? 0 : 1; mutex_unlock(&spi_ap_dout_mutex); return sprintf(buf, "%d\n", value); } static ssize_t mts_attr_show_ap_adc(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { int tmp; int tx_data; int rx_data; int channel; int port; int port_index; int channel_mask = 0x0180; /* 0b 0000 0001 1000 0000 */ int manual_mode = 0x1840; /* 0b 0001 1000 0100 0000 */ uint8_t tx[2]; uint8_t rx[2]; memset(tx, 0, sizeof(tx)); memset(rx, 0, sizeof(rx)); sscanf(attr->attr.name, "adc%d:%d", &channel, &port); port_index = port - 1; if (channel < 0 || channel > 2) { log_error("channel [%d] is invalid", channel); return -ENOENT; } if (port < 1 || port > NUM_AP) { log_error("port [%d] is invalid", port); return -ENOENT; } /* 1st transfer to set up (5V reference, channel to read from) */ tx_data = manual_mode | ((channel << 7) & channel_mask); tx[0] = tx_data >> 8; tx[1] = tx_data & 0xFF; tmp = spi_writen(gpiob_spi[port_index][adc], tx, 2); if (tmp) { log_error("spi_write failed %d", tmp); return tmp; } /* 2nd transfer to clock chip for ADC conversion * this can be a throw-away read or an empty write, * the ADC just needs the clock running so it can convert */ tx[0] = 0; tx[1] = 0; tmp = spi_writen(gpiob_spi[port_index][adc], tx, 2); if (tmp) { log_error("2nd spi_write failed %d", tmp); return tmp; } /* 3rd transfer to read data */ tmp = spi_readn(gpiob_spi[port_index][adc], rx, 2); if (tmp) { log_error("spi_read failed %d", tmp); return tmp; } rx_data = ((rx[0] & 0x0F) << 8) | (rx[1] & 0xFF); return sprintf(buf, "%lu\n", (unsigned long) rx_data); } static bool gpiob_spi_driver_setup(struct spi_driver *driver, const char *driver_name) { char* name = kstrdup(driver_name, GFP_KERNEL); if (! name) { log_error("GFP_KERNEL dup failed for driver [%s]", driver_name); return false; } driver->driver.name = name; driver->driver.bus = &spi_bus_type; driver->driver.owner = THIS_MODULE; driver->probe = mts_spi_ap_probe; driver->remove = mts_spi_ap_remove; return true; } // 4 digital inputs // 4 digital outputs // 3 analog to digital // 2 LEDs // 1 digital out enable // 1 reset // 1 vendor-id // 1 product-id // 1 device-id // 1 hw-version static int ap_gpiob_attrs_size = 19; static bool gpiob_setup(enum ap port) { int i; int port_index = port - 1; struct kobj_attribute *attr; char buf[32]; log_info("loading GPIOB accessory card in port %d", port); if (device_attrs_size + ap_gpiob_attrs_size >= device_attrs_max_size) { log_error("can't load GPIOB accessory card in port %d - not enough room for attributes", port); return false; } // mark the attribute indices we're using so we know what to clean up port_info[port_index]->attrs_start = device_attrs_size; port_info[port_index]->attrs_end = device_attrs_size + ap_gpiob_attrs_size; // add digital inputs for (i = 0; i < 4; i++) { sprintf(buf, "din%d:%d", i, port); attr = create_attribute(buf, MTS_ATTR_MODE_RO); if (! attr) { log_error("failed to create attribute[%s]", buf); return false; } attr->show = mts_attr_show_ap_din; device_attrs[device_attrs_size++] = &attr->attr; } // add digital outputs for (i = 0; i < 4; i++) { sprintf(buf, "dout%d:%d", i, port); attr = create_attribute(buf, MTS_ATTR_MODE_RW); if (! attr) { log_error("failed to create attribute[%s]", buf); return false; } attr->show = mts_attr_show_ap_dout; attr->store = mts_attr_store_ap_dout; device_attrs[device_attrs_size++] = &attr->attr; } // add analog to digital for (i = 0; i < 3; i++) { sprintf(buf, "adc%d:%d", i, port); attr = create_attribute(buf, MTS_ATTR_MODE_RO); if (! attr) { log_error("failed to create attribute[%s]", buf); return false; } attr->show = mts_attr_show_ap_adc; device_attrs[device_attrs_size++] = &attr->attr; } // add LEDs for (i = 1; i <= 2; i++) { sprintf(buf, "ap-led%d:%d", i, port); attr = create_attribute(buf, MTS_ATTR_MODE_RW); if (! attr) { log_error("failed to create attribute[%s]", buf); return false; } attr->show = mts_attr_show_ap_gpio_pin; attr->store = mts_attr_store_ap_gpio_pin; device_attrs[device_attrs_size++] = &attr->attr; } // add attributes for eeprom contents if (! ap_add_product_info_attributes(port, MTAC_GPIOB_0_0)) { log_error("failed to add product info attributes"); return false; } // add misc attributes sprintf(buf, "ap-dout-enable:%d", port); attr = create_attribute(buf, MTS_ATTR_MODE_RW); if (! attr) { log_error("failed to create attribute[%s]", buf); return false; } attr->show = mts_attr_show_ap_gpio_pin; attr->store = mts_attr_store_ap_gpio_pin; device_attrs[device_attrs_size++] = &attr->attr; sprintf(buf, "ap-reset:%d", port); attr = create_attribute(buf, MTS_ATTR_MODE_RW); if (! attr) { log_error("failed to create attribute[%s]", buf); return false; } attr->show = mts_attr_show_ap_gpio_pin; attr->store = mts_attr_store_ap_gpio_pin; device_attrs[device_attrs_size++] = &attr->attr; // setup and register drivers log_debug("registering accessory card %d dout driver", port); sprintf(buf, "mts-io-ap%d-dout", port); if (! gpiob_spi_driver_setup(&gpiob_spi_drivers[port_index][dout], buf)) { log_error("failed to set up spi driver [%s]", buf); return false; } if (spi_register_driver(&gpiob_spi_drivers[port_index][dout])) { log_error("failed to register accessory card %d dout driver", port); spi_unregister_driver(&gpiob_spi_drivers[port_index][dout]); return false; } log_debug("registering accessory card %d din driver", port); sprintf(buf, "mts-io-ap%d-din", port); if (! gpiob_spi_driver_setup(&gpiob_spi_drivers[port_index][din], buf)) { log_error("failed to set up spi driver [%s]", buf); return false; } if (spi_register_driver(&gpiob_spi_drivers[port_index][din])) { log_error("failed to register accessory card %d din driver", port); spi_unregister_driver(&gpiob_spi_drivers[port_index][din]); return false; } log_debug("registering accessory card %d adc driver", port); sprintf(buf, "mts-io-ap%d-adc", port); if (! gpiob_spi_driver_setup(&gpiob_spi_drivers[port_index][adc], buf)) { log_error("failed to set up spi driver [%s]", buf); return false; } if (spi_register_driver(&gpiob_spi_drivers[port_index][adc])) { log_error("failed to register accessory card %d adc driver", port); spi_unregister_driver(&gpiob_spi_drivers[port_index][adc]); return false; } return true; } static bool gpiob_teardown(enum ap port) { int i; int port_index = port - 1; log_info("unloading GPIOB accessory card in port %d", port); // clean up allocated memory for attributes for (i = port_info[port_index]->attrs_start; i < port_info[port_index]->attrs_end; i++) { if (device_attrs[i]) { if (device_attrs[i]->name) kfree(device_attrs[i]->name); kfree(device_attrs[i]); } } // clean up allocated memory for SPI drivers if (gpiob_spi_drivers[port_index][dout].driver.name) kfree(gpiob_spi_drivers[port_index][dout].driver.name); if (gpiob_spi_drivers[port_index][din].driver.name) kfree(gpiob_spi_drivers[port_index][din].driver.name); if (gpiob_spi_drivers[port_index][adc].driver.name) kfree(gpiob_spi_drivers[port_index][adc].driver.name); // unregister SPI drivers spi_unregister_driver(&gpiob_spi_drivers[port_index][dout]); spi_unregister_driver(&gpiob_spi_drivers[port_index][din]); spi_unregister_driver(&gpiob_spi_drivers[port_index][adc]); // reset attribute index markers port_info[port_index]->attrs_start = 0; port_info[port_index]->attrs_end = 0; return true; } bool set_gpiob_info(struct ap_info* info) { info->product_id = MTAC_GPIOB_0_0; info->setup = &gpiob_setup; info->teardown = &gpiob_teardown; info->attrs_start = 0; info->attrs_end = 0; return true; }