/* / _____) _ | | ( (____ _____ ____ _| |_ _____ ____| |__ \____ \| ___ | (_ _) ___ |/ ___) _ \ _____) ) ____| | | || |_| ____( (___| | | | (______/|_____)_|_|_| \__)_____)\____)_| |_| (C)2013 Semtech-Cycleo Description: Library of functions to manage a GNSS module (typically GPS) for accurate timestamping of packets and synchronisation of gateways. A limited set of module brands/models are supported. License: Revised BSD License, see LICENSE.TXT file include in the project Maintainer: Michael Coracin */ /* -------------------------------------------------------------------------- */ /* --- DEPENDANCIES --------------------------------------------------------- */ #include /* C99 types */ #include /* bool type */ #include /* printf fprintf */ #include /* memcpy */ #include /* struct timespec */ #include /* open */ #include /* tcflush */ #include /* modf */ #include #include "loragw_gps.h" /* -------------------------------------------------------------------------- */ /* --- PRIVATE MACROS ------------------------------------------------------- */ #define ARRAY_SIZE(a) (sizeof(a) / sizeof((a)[0])) #if DEBUG_GPS == 1 #define DEBUG_MSG(args...) fprintf(stderr, args) #define DEBUG_ARRAY(a,b,c) for(a=0;a= buff_size) { DEBUG_MSG("Maximum length reached for nmea_checksum\n"); return -1; } } /* Convert checksum value to 2 hexadecimal characters */ checksum[0] = nibble_to_hexchar(check_num / 16); /* upper nibble */ checksum[1] = nibble_to_hexchar(check_num % 16); /* lower nibble */ return i + 1; } /* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ */ static char nibble_to_hexchar(uint8_t a) { if (a < 10) { return '0' + a; } else if (a < 16) { return 'A' + (a-10); } else { return '?'; } } /* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ */ /* Calculate the checksum of a NMEA frame and compare it to the checksum that is present at the end of it. Return true if it matches */ static bool validate_nmea_checksum(const char *serial_buff, size_t buff_size) { int checksum_index; char checksum[2]; /* 2 characters to calculate NMEA checksum */ checksum_index = nmea_checksum(serial_buff, buff_size, checksum); /* could we calculate a verification checksum ? */ if (checksum_index < 0) { DEBUG_MSG("ERROR: IMPOSSIBLE TO PARSE NMEA SENTENCE\n"); return false; } /* check if there are enough char in the serial buffer to read checksum */ if (checksum_index >= (buff_size - 2)) { DEBUG_MSG("ERROR: IMPOSSIBLE TO READ NMEA SENTENCE CHECKSUM\n"); return false; } /* check the checksum per se */ if ((serial_buff[checksum_index] == checksum[0]) && (serial_buff[checksum_index+1] == checksum[1])) { return true; } else { DEBUG_MSG("ERROR: NMEA CHECKSUM %c%c DOESN'T MATCH VERIFICATION CHECKSUM %c%c\n", serial_buff[checksum_index], serial_buff[checksum_index+1], checksum[0], checksum[1]); return false; } } /* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ */ /* Return true if the "label" string (can contain wildcard characters) matches the begining of the "s" string */ static bool match_label(const char *s, char *label, size_t size, char wildcard) { int i; for (i=0; i < size; i++) { if (label[i] == wildcard) continue; if (!s[i] || !label[i]) return false; if (label[i] != s[i]) return false; } return true; } /* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ */ /* Chop a string into smaller strings Replace every separator in the input character buffer by a null character so that all s[index] are valid strings. Populate an array of integer 'idx_ary' representing indexes of token in the string. buff_size and max_idx are there to prevent segfaults. Return the number of token found (number of idx_ary filled). */ int str_chop(char *s, int buff_size, char separator, int *idx_ary, int max_idx) { int i = 0; /* index in the string */ int j = 0; /* index in the result array */ if ((s == NULL) || (buff_size < 0) || (separator == 0) || (idx_ary == NULL) || (max_idx < 0)) { /* unsafe to do anything */ return -1; } if ((buff_size == 0) || (max_idx == 0)) { /* nothing to do */ return 0; } s[buff_size - 1] = 0; /* add string terminator at the end of the buffer, just to be sure */ idx_ary[j] = 0; j += 1; /* loop until string terminator is reached */ while (s[i] != 0) { if (s[i] == separator) { s[i] = 0; /* replace separator by string terminator */ if (j >= max_idx) { /* no more room in the index array */ return j; } idx_ary[j] = i+1; /* next token start after replaced separator */ ++j; } ++i; } return j; } /* -------------------------------------------------------------------------- */ /* --- PUBLIC FUNCTIONS DEFINITION ------------------------------------------ */ int lgw_gps_enable() { unsigned int flags; struct fixsource_t source; flags |= WATCH_RAW; /* super-raw data (gps binary) */ flags |= WATCH_NMEA; /* raw NMEA */ gpsd_source_spec(NULL, &source); if (gps_open(source.server, source.port, &gpsdata) != 0) { return LGW_GPS_ERROR; } (void)gps_stream(&gpsdata, flags, source.device); /* get timezone info */ tzset(); /* initialize global variables */ gps_time_ok = false; gps_pos_ok = false; gps_valid = 'N'; return LGW_GPS_SUCCESS; } /* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ */ void lgw_gps_disable() { (void)gps_close(&gpsdata); } /* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ */ int lgw_gps_data_ready() { return nanowait(gpsdata.gps_fd, NS_IN_SEC); } /* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ */ int lgw_gps_stream(char *message, size_t len) { return recv(gpsdata.gps_fd, message, len, 0); } /* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ */ int lgw_get_leap_seconds() { FILE *fp; char path[1035]; uint32_t result = 0; /* Open the command for reading. */ fp = popen("/usr/bin/gpspipe -w -n 4 | grep leapsec | jsparser --path leapseconds", "r"); if (fp == NULL) { DEBUG_MSG("ERROR: Failed to run command\n" ); return LGW_GPS_ERROR; } if (fgets(path, sizeof(path), fp) == NULL) { DEBUG_MSG("ERROR: Unable to get leap seconds\n"); pclose(fp); return LGW_GPS_ERROR; } pclose(fp); result = atoi(path); if (result == 0) { DEBUG_MSG("ERROR: Invalid leap second value\n"); return LGW_GPS_ERROR; } else { leap_seconds = result; return LGW_GPS_SUCCESS; } } /* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ */ enum gps_msg lgw_parse_ubx(const char *serial_buff, size_t buff_size, size_t *msg_size) { bool valid = 0; /* iTOW, fTOW and week validity */ unsigned int payload_length; uint8_t ck_a, ck_b; uint8_t ck_a_rcv, ck_b_rcv; unsigned int i; *msg_size = 0; /* ensure msg_size alway receives a value */ /* check input parameters */ if (serial_buff == NULL) { return IGNORED; } if (buff_size < 8) { DEBUG_MSG("ERROR: TOO SHORT TO BE A VALID UBX MESSAGE\n"); return IGNORED; } /* display received serial data and checksum */ DEBUG_MSG("Note: parsing UBX frame> "); for (i=0; i (size_t)(sizeof(parser_buf) - 1)) { DEBUG_MSG("Note: input string to big for parsing\n"); return INVALID; } else if (buff_size < 8) { DEBUG_MSG("ERROR: TOO SHORT TO BE A VALID NMEA SENTENCE\n"); return UNKNOWN; } memcpy(parser_buf, serial_buff, buff_size); parser_buf[buff_size] = '\0'; /* look for some NMEA sentences in particular */ if (!validate_nmea_checksum(parser_buf, buff_size)) { DEBUG_MSG("Warning: invalid NMEA sentence (bad checksum)\n"); return INVALID; } else if (match_label(parser_buf, "$G?RMC", 6, '?')) { /* NMEA sentence format: $xxRMC,time,status,lat,NS,long,EW,spd,cog,date,mv,mvEW,posMode*cs Valid fix: $GPRMC,083559.34,A,4717.11437,N,00833.91522,E,0.004,77.52,091202,,,A*00 No fix: $GPRMC,,V,,,,,,,,,,N*00 */ nb_fields = str_chop(parser_buf, buff_size, ',', str_index, ARRAY_SIZE(str_index)); if (nb_fields != 12) { DEBUG_MSG("Warning: invalid RMC sentence (number of fields)\n"); return IGNORED; } /* parse GPS status */ if (parser_buf + str_index[2]) { gps_valid = *(parser_buf + str_index[2]); if ((gps_valid != 'A')) { gps_valid = 'V'; } } /* parse GPS time */ if (parser_buf + str_index[1]) { strncat(rmc_time, parser_buf + str_index[1], 63); i = sscanf(rmc_time, "%2hd%2hd%2hd%4f", &gps_hou, &gps_min, &gps_sec, &gps_fra); } /* parse GPS date */ if (parser_buf + str_index[9]) { strncat(rmc_date, parser_buf + str_index[9], 63); j = sscanf(rmc_date, "%2hd%2hd%2hd", &gps_day, &gps_mon, &gps_yea); } /* if rmc status, hours, mins, secs, frac, day, mon, & yea is valid, set gps_time_ok to true */ if ((i == 4) && (j == 3)) { if (gps_valid == 'A') { gps_time_ok = true; DEBUG_MSG("Note: Valid RMC sentence, GPS locked, date: 20%02d-%02d-%02dT%02d:%02d:%06.3fZ\n", gps_yea, gps_mon, gps_day, gps_hou, gps_min, gps_fra + (float)gps_sec); } else { gps_time_ok = false; gps_pos_ok = false; DEBUG_MSG("Note: Valid RMC sentence, no satellite fix, estimated date: 20%02d-%02d-%02dT%02d:%02d:%06.3fZ\n", gps_yea, gps_mon, gps_day, gps_hou, gps_min, gps_fra + (float)gps_sec); return IGNORED; } } else { /* could not get a valid hour AND date */ gps_time_ok = false; DEBUG_MSG("Note: Valid RMC sentence, mode %c, no date\n", gps_valid); return IGNORED; } return NMEA_RMC; } else if (match_label(parser_buf, "$G?GGA", 6, '?')) { /* NMEA sentence format: $xxGGA,time,lat,NS,long,EW,quality,numSV,HDOP,alt,M,sep,M,diffAge,diffStation*cs Valid fix: $GPGGA,092725.00,4717.11399,N,00833.91590,E,1,08,1.01,499.6,M,48.0,M,,*5B */ memcpy(parser_buf, serial_buff, buff_size); parser_buf[buff_size] = '\0'; nb_fields = str_chop(parser_buf, buff_size, ',', str_index, ARRAY_SIZE(str_index)); if (nb_fields != 15) { DEBUG_MSG("Warning: invalid GGA sentence (number of fields)\n"); return IGNORED; } /* parse number of satellites used for fix */ sscanf(parser_buf + str_index[7], "%hd", &gps_sat); /* parse 3D coordinates */ i = sscanf(parser_buf + str_index[2], "%2hd%10lf", &gps_dla, &gps_mla); gps_ola = *(parser_buf + str_index[3]); j = sscanf(parser_buf + str_index[4], "%3hd%10lf", &gps_dlo, &gps_mlo); gps_olo = *(parser_buf + str_index[5]); k = sscanf(parser_buf + str_index[9], "%hd", &gps_alt); if ((i == 2) && (j == 2) && (k == 1) && ((gps_ola=='N')||(gps_ola=='S')) && ((gps_olo=='E')||(gps_olo=='W'))) { gps_pos_ok = true; DEBUG_MSG("Note: Valid GGA sentence, %d sat, lat %02ddeg %06.3fmin %c, lon %03ddeg%06.3fmin %c, alt %d\n", gps_sat, gps_dla, gps_mla, gps_ola, gps_dlo, gps_mlo, gps_olo, gps_alt); } else { /* could not get a valid latitude, longitude AND altitude */ gps_pos_ok = false; DEBUG_MSG("Note: Valid GGA sentence, %d sat, no coordinates\n", gps_sat); } return NMEA_GGA; } else { DEBUG_MSG("Note: ignored NMEA sentence\n"); /* quite verbose */ return IGNORED; } } /* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ */ int lgw_gps_get(struct timespec *utc, struct timespec *gps_time, struct coord_s *loc, struct coord_s *err) { struct tm x; time_t y; double intpart, fractpart; if (utc != NULL) { if (!gps_time_ok) { DEBUG_MSG("ERROR: NO VALID TIME TO RETURN\n"); return LGW_GPS_ERROR; } memset(&x, 0, sizeof(x)); if (gps_yea < 100) { /* 2-digits year, 20xx */ x.tm_year = gps_yea + 100; /* 100 years offset to 1900 */ } else { /* 4-digits year, Gregorian calendar */ x.tm_year = gps_yea - 1900; } x.tm_mon = gps_mon - 1; /* tm_mon is [0,11], gps_mon is [1,12] */ x.tm_mday = gps_day; x.tm_hour = gps_hou; x.tm_min = gps_min; x.tm_sec = gps_sec; y = mktime(&x) - timezone; /* need to substract timezone bc mktime assumes time vector is local time */ if (y == (time_t)(-1)) { DEBUG_MSG("ERROR: FAILED TO CONVERT BROKEN-DOWN TIME\n"); return LGW_GPS_ERROR; } utc->tv_sec = y; utc->tv_nsec = (int32_t)(gps_fra * 1e9); } if (gps_time != NULL) { if (!gps_time_ok) { DEBUG_MSG("ERROR: NO VALID TIME TO RETURN\n"); return LGW_GPS_ERROR; } fractpart = modf(((double)gps_iTOW / 1E3) + ((double)gps_fTOW / 1E9), &intpart); /* Number of seconds since beginning on current GPS week */ gps_time->tv_sec = (time_t)intpart; /* Number of seconds since GPS epoch 06.Jan.1980 */ gps_time->tv_sec += (time_t)gps_week * 604800; /* day*hours*minutes*secondes: 7*24*60*60; */ /* Fractional part in nanoseconds */ gps_time->tv_nsec = (long)(fractpart * 1E9); } if (loc != NULL) { if (!gps_pos_ok) { DEBUG_MSG("ERROR: NO VALID POSITION TO RETURN\n"); return LGW_GPS_ERROR; } loc->lat = ((double)gps_dla + (gps_mla/60.0)) * ((gps_ola == 'N')?1.0:-1.0); loc->lon = ((double)gps_dlo + (gps_mlo/60.0)) * ((gps_olo == 'E')?1.0:-1.0); loc->alt = gps_alt; } if (err != NULL) { DEBUG_MSG("Warning: localization error processing not implemented yet\n"); err->lat = 0.0; err->lon = 0.0; err->alt = 0; } return LGW_GPS_SUCCESS; } /* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ */ int lgw_gps_sync(struct tref *ref, uint32_t count_us, struct timespec utc, struct timespec gps_time) { double cnt_diff; /* internal concentrator time difference (in seconds) */ double utc_diff; /* UTC time difference (in seconds) */ double slope; /* time slope between new reference and old reference (for sanity check) */ bool aber_n0; /* is the update value for synchronization aberrant or not ? */ static bool aber_min1 = false; /* keep track of whether value at sync N-1 was aberrant or not */ static bool aber_min2 = false; /* keep track of whether value at sync N-2 was aberrant or not */ static uint32_t last_count_us = 0; CHECK_NULL(ref); /* calculate the slope */ cnt_diff = (double)(count_us - ref->count_us) / (double)(TS_CPS); /* uncorrected by xtal_err */ utc_diff = (double)(utc.tv_sec - (ref->utc).tv_sec) + (1E-9 * (double)(utc.tv_nsec - (ref->utc).tv_nsec)); if (cnt_diff == 0.0 || last_count_us == count_us) { // no pps change from SX1301, invalidate system reference time ref->systime = 0; ref->count_us = count_us; return LGW_GPS_ERROR; } last_count_us = count_us; /* detect aberrant points by measuring if slope limits are exceeded */ if (utc_diff != 0) { // prevent divide by zero slope = cnt_diff/utc_diff; if ((slope > PLUS_10PPM) || (slope < MINUS_10PPM)) { DEBUG_MSG("Warning: correction range exceeded\n"); aber_n0 = true; } else { aber_n0 = false; } } else { DEBUG_MSG("Warning: aberrant UTC value for synchronization\n"); aber_n0 = true; } /* watch if the 3 latest sync point were aberrant or not */ if (aber_n0 == false) { /* value no aberrant -> sync with smoothed slope */ ref->systime = time(NULL); ref->count_us = count_us; ref->utc.tv_sec = utc.tv_sec; ref->utc.tv_nsec = utc.tv_nsec; ref->gps.tv_sec = gps_time.tv_sec; ref->gps.tv_nsec = gps_time.tv_nsec; ref->xtal_err = slope; aber_min2 = aber_min1; aber_min1 = aber_n0; return LGW_GPS_SUCCESS; } else if (aber_n0 && aber_min1 && aber_min2) { /* 3 successive aberrant values -> sync reset (keep xtal_err) */ ref->systime = time(NULL); ref->count_us = count_us; ref->utc.tv_sec = utc.tv_sec; ref->utc.tv_nsec = utc.tv_nsec; ref->gps.tv_sec = gps_time.tv_sec; ref->gps.tv_nsec = gps_time.tv_nsec; /* reset xtal_err only if the present value is out of range */ if ((ref->xtal_err > PLUS_10PPM) || (ref->xtal_err < MINUS_10PPM)) { ref->xtal_err = 1.0; } DEBUG_MSG("Warning: 3 successive aberrant sync attempts, sync reset\n"); aber_min2 = aber_min1; aber_min1 = aber_n0; return LGW_GPS_SUCCESS; } else { /* only 1 or 2 successive aberrant values -> ignore and return an error */ aber_min2 = aber_min1; aber_min1 = aber_n0; return LGW_GPS_ERROR; } return LGW_GPS_SUCCESS; } /* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ */ int lgw_cnt2utc(struct tref ref, uint32_t count_us, struct timespec *utc) { double delta_sec; double intpart, fractpart; long tmp; CHECK_NULL(utc); if ((ref.systime == 0) || (ref.xtal_err > PLUS_10PPM) || (ref.xtal_err < MINUS_10PPM)) { DEBUG_MSG("ERROR: INVALID REFERENCE FOR CNT -> UTC CONVERSION\n"); return LGW_GPS_ERROR; } /* calculate delta in seconds between reference count_us and target count_us calculate rollover diff, uint32 difference is OK */ if (count_us > ref.count_us || ((ref.count_us & 0xFF000000) == 0xFF000000) && ((count_us & 0xFF000000) == 0)) delta_sec = (double)(count_us - ref.count_us) / (TS_CPS * ref.xtal_err); } else { delta_sec = -(double)(ref.count_us - count_us) / (TS_CPS * ref.xtal_err); } /* now add that delta to reference UTC time */ fractpart = modf (delta_sec , &intpart); tmp = ref.utc.tv_nsec + (long)(fractpart * 1E9); if (tmp < 0) { utc->tv_sec = ref.utc.tv_sec + (time_t)intpart - 1; utc->tv_nsec = (long)1E9 + tmp; } else if (tmp < (long)1E9) { /* the nanosecond part doesn't overflow */ utc->tv_sec = ref.utc.tv_sec + (time_t)intpart; utc->tv_nsec = tmp; } else { /* must carry one second */ utc->tv_sec = ref.utc.tv_sec + (time_t)intpart + 1; utc->tv_nsec = tmp - (long)1E9; } return LGW_GPS_SUCCESS; } /* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ */ int lgw_utc2cnt(struct tref ref, struct timespec utc, uint32_t *count_us) { double delta_sec; CHECK_NULL(count_us); if ((ref.systime == 0) || (ref.xtal_err > PLUS_10PPM) || (ref.xtal_err < MINUS_10PPM)) { DEBUG_MSG("ERROR: INVALID REFERENCE FOR UTC -> CNT CONVERSION\n"); return LGW_GPS_ERROR; } if (utc.tv_sec < ref.utc.tv_sec || (utc.tv_sec == ref.utc.tv_sec && utc.tv_nsec < ref.utc.tv_nsec)) { DEBUG_MSG("ERROR: UTC time has passed\n"); return LGW_GPS_ERROR; } /* calculate delta in seconds between reference utc and target utc */ delta_sec = (double)(utc.tv_sec - ref.utc.tv_sec); delta_sec += 1E-9 * (double)(utc.tv_nsec - ref.utc.tv_nsec); /* now convert that to internal counter tics and add that to reference counter value */ *count_us = ref.count_us + (uint32_t)(delta_sec * TS_CPS * ref.xtal_err); return LGW_GPS_SUCCESS; } /* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ */ int lgw_cnt2gps(struct tref ref, uint32_t count_us, struct timespec *gps_time) { double delta_sec; double intpart, fractpart; long tmp; CHECK_NULL(gps_time); if ((ref.systime == 0) || (ref.xtal_err > PLUS_10PPM) || (ref.xtal_err < MINUS_10PPM)) { DEBUG_MSG("ERROR: INVALID REFERENCE FOR CNT -> GPS CONVERSION\n"); return LGW_GPS_ERROR; } /* calculate delta in seconds between reference count_us and target count_us calculate rollover diff, uint32 difference is OK */ if (count_us > ref.count_us || ((ref.count_us & 0xFF000000) == 0xFF000000) && ((count_us & 0xFF000000) == 0)) { delta_sec = (double)(count_us - ref.count_us) / (TS_CPS * ref.xtal_err); } else { delta_sec = -(double)(ref.count_us - count_us) / (TS_CPS * ref.xtal_err); } /* now add that delta to reference GPS time */ fractpart = modf (delta_sec , &intpart); tmp = ref.gps.tv_nsec + (long)(fractpart * 1E9); if (tmp < 0) { gps_time->tv_sec = ref.gps.tv_sec + (time_t)intpart - 1; gps_time->tv_nsec = (long)1E9 + tmp; } else if (tmp < (long)1E9) { /* the nanosecond part doesn't overflow */ gps_time->tv_sec = ref.gps.tv_sec + (time_t)intpart; gps_time->tv_nsec = tmp; } else { /* must carry one second */ gps_time->tv_sec = ref.gps.tv_sec + (time_t)intpart + 1; gps_time->tv_nsec = tmp - (long)1E9; } return LGW_GPS_SUCCESS; } /* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ */ int lgw_gps2cnt(struct tref ref, struct timespec gps_time, uint32_t *count_us) { double delta_sec; CHECK_NULL(count_us); if ((ref.systime == 0) || (ref.xtal_err > PLUS_10PPM) || (ref.xtal_err < MINUS_10PPM)) { DEBUG_MSG("ERROR: INVALID REFERENCE FOR GPS -> CNT CONVERSION\n"); return LGW_GPS_ERROR; } if (gps_time.tv_sec < ref.gps.tv_sec || (gps_time.tv_sec == ref.gps.tv_sec && gps_time.tv_nsec < ref.gps.tv_nsec)) { DEBUG_MSG("ERROR: GPS time has passed\n"); return LGW_GPS_ERROR; } /* calculate delta in seconds between reference gps time and target gps time */ delta_sec = (double)(gps_time.tv_sec - ref.gps.tv_sec); delta_sec += 1E-9 * (double)(gps_time.tv_nsec - ref.gps.tv_nsec); /* now convert that to internal counter tics and add that to reference counter value */ *count_us = ref.count_us + (uint32_t)(delta_sec * TS_CPS * ref.xtal_err); return LGW_GPS_SUCCESS; } /* --- EOF ------------------------------------------------------------------ */